Построение области по заданным уравнениям

Урок на тему «Метод областей». 11-й класс

Класс: 11

Презентация к уроку

«Считай несчастным тот день и тот час,
вк оторый ты не усвоил ничего нового и ничего
не прибавил к своему образованию».
Я.А Коменский

Тип урока: урок-обобщения и систематизации знаний учащихся.

Цели урока:

  • создать условия для систематизации, обобщения знаний и умений обучающихся по применению различных методов решения неравенств;
  • воспитание нравственных качеств личности, таких как ответственность, аккуратность, дисциплинированность;
  • воспитание культуры общения.
  • развитие у учащихся умений выделять главное, существенное в изучаемом материале, обобщать изучаемые факты, логически излагать свои мысли;
  • развитие психических процессов, таких как память, внимание, мышление, а также наблюдательности, активности, самостоятельности.

Задачи:

  • формировать умение классифицировать неравенства по методам решения;
  • закрепить навыки решения неравенств различными методами;
  • отрабатывать навыки самоконтроля с целью подготовки к итоговой аттестации;
  • воспитывать чувство коллективизма, ответственности.

Оборудование:

  • Компьютер
  • Мультимедийный проектор, звуковые колонки
  • Программа «MicrosoftPowerPoint 2003»

Методы обучения:

  • частично-поисковый метод,
  • репродуктивный,
  • обобщающий.

План урока.

План урока рассчитан на 2 учебных часа (90 мин)

  1. Организационный момент.
  2. Вступительное слово учителя.
  3. Повторение теории.
  4. Решение неравенств различными методами (варианты ЕГЭ)
  5. Самостоятельная работа с самопроверкой.
  6. Итог урока.
  7. Рефлексия.

Ход урока

I. Организационный момент

«То, что мы знаем, — ограничено, а то чего
мы не знаем, — бесконечно».

Приветствие учащихся.Ученики под руководством учителя проверяют наличие дневника, рабочей тетради, инструментов, отмечаются отсутствующие, проверяется готовность класса к уроку, учитель психологически настраивает детей на работу на уроке.Формулируется тема и цели урока. Знакомство с этапами урока.

II. Вступительное слово учителя

Для успешного исследования многих задач повышенной сложности полезно уметь строить не только графики функций, но и множества точек плоскости, координаты которых удовлетворяют заданным уравнениям, неравенствам или их системам. Эффективно строить на координатной плоскости такие множества позволяет метод областей. Это весьма полезный прием можно назвать обобщающим методом интервалов.
Метод областей особенно полезен при решении уравнений или неравенств с параметром. Применение метода интервалов в таких случаях затруднено, так как взаимное расположение точек, отмечаемых на числовой оси, может изменяться в зависимости от значений параметра. Это означает необходимость сравнивать их между собой и рассматривать различные случаи. В этой ситуации нам может помочь метод областей.

III. Повторение теории

Метод интервалов на координатной прямой и метод областей на координатной плоскости.

Точка х=а разбивает числовую прямую на два множества, задаваемые неравенствами x a

Всякая действительная кривая на координатной плоскости, заданная уравнением F(x;y)=0 разбивает координатную плоскость на конечное число областей, в каждой из которых для всех точек области выполняется только одно из неравенств: F(x;y)>0 или F(x;y) kx+p или y c

Решением системы неравенств с двумя переменными являются координаты точек пересечения множеств, удовлетворяющих одному из неравенств системы

Уравнение y= k(x-x0) + y0 задает множество прямых, проходящих через точку с координатами (x0,y0).

При изменении значений параметра прямые y= k(x-x0) + y0 «поворачиваются» вокруг данной точки. При увеличении параметра прямая поворачивается «против часовой стрелки», при уменьшении – «по часовой стрелке».

Уравнение y=kx+p при фиксированном значении параметра k = k0 задает семейство прямых, параллельных прямой y=kx+p проходящей через начало координат

Если точка с координатами лежит «выше» прямой заданной уравнением y=kx+p, то ее координаты удовлетворяют неравенству , если же точка лежит «ниже», то неравенству

Задача

Пусть M – множество точек плоскости с координатами (x; y) таких, что числа x, y, 6-2x являются сторонами некоторого треугольника. Найдите его площадь.

Если три числа являются сторонами некоторого треугольника, то это числа положительные и каждое из них меньше суммы двух других чисел. Поэтому, координаты точек, удовлетворяющих условию задачи, будут задаваться системой линейных неравенств с двумя переменными:

Геометрическое место точек на плоскости

Множество точек плоскости, равноудаленных от данной точки на расстояние, равное положительной величине R, называется окружностью.
Уравнением окружности называется уравнение вида

Множество точек, удаленных от данной точки на положительное расстояние, меньшее R, называется кругом. Круг задается неравенством

Множество точек, лежащих вне круга, задается неравенством

Геометрическое место точек на плоскости

Квадратным трехчленом относительно переменной, называется выражение

Графиком квадратного трехчлена является кривая, называемая параболой.
Расположение параболы зависит от знака старшего коэффициента и знака дискриминанта квадратного трехчлена

Парабола разбивает плоскость на часть, лежащую «над» параболой и лежащую «под» параболой. Первая задается неравенством

, а вторая –

Метод областей при решении задач с параметрами

1. Свойства функций

2. Графический прием

Параметр – «равноправная» переменная Þ отведем ему координатную ось, т.е. задачу с параметром будем рассматривать как функцию f(x ;a) >0

Общие признаки задач подходящих под рассматриваемый метод:

  • В задаче дан один параметр а и одна переменная х
  • Они образуют некоторые аналитические выражения F(x;a), G(x;a)
  • Графики уравнений F(x;a)=0,G(x;a)=0 строятся несложно
  1. Строим графический образ
  2. Пересекаем полученный график прямыми, перпендикулярными параметрической оси
  3. «Считываем» нужную информацию

Обобщенный метод областей («переход» метода интервалов с прямой на плоскость)

Неравенства с одной переменной

Неравенства с двумя переменной

  1. ОДЗ
  2. Граничные линии
  3. Координатная плоскость
  4. Знаки в областях
  5. Ответ по рисунку

IV. Решение неравенств

Пример №1

Найти все значения параметра p, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства

Применим обобщенный метод областей.

1. Построим граничные линии

2. Определяем знаки в полученных областях и получаем решение 1 неравенства

3. Из полученного множества исключим решение

Пример № 2

При каких значениях параметра а система неравенств не имеет решений.

1. Рассмотрим 1 неравенство и получаем

2. Рассмотрим 2 неравенство и получаем

3. Заметим, что исходная система неравенств равносильна системе:

4. Изобразим систему неравенств в виде плоской фигуры на координатной плоскости. Для этого введём параметрическую плоскость Oax

5. Мы получили плоскую фигуру, множество точек которой является решением системы.

Таким образом, отвечая на вопрос задачи, решений системы нет при

Пример №3

При каких положительных значениях параметраа система уравнений имеет ровно 4 решения.

1. Запишем систему в следующем виде:

2. Построим график 1 уравнения.

3. Построим график 2 уравнения – семейство окружностей с центром в точке (2; 0) и радиусом а.

Ответ: при

V. Самостоятельная работа с самопроверкой

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству

1. ОДЗ:

2. Строим граничные линии:

3. Они разбивают плоскость на восемь областей, определяя знаки подстановкой в отдельных точках, получаем решение.

Ответ: заштрихованная область на рисунке

На координатной плоскости изобразите множество точек, координаты которых удовлетворяют неравенству

  1. На координатной плоскости нарисуем линии определённые равенствами x-y=0 и xy-1=0, которые разбивают плоскость на несколько областей.
  2. Определяем знаки в областях.

Ответ: заштрихованная область на рисунке

VI. Итог урока

(подвожу итог, комментирую работу учащихся, сообщаю оценки за урок.)

VII. Рефлексия.

Ребята. На этом урок окончен. Спасибо за урок!

Литература.

  1. П. И. Горнштейн, В.Б.Полонский, М.С.Якир. Задачи с параметрами. 3-е издание, дополненное и переработанное. — М.: Илскса, Харьков: Гимназия, 2005,- 328 с.
  2. Черкасов О. Ю., Якушев А. Г. Математика: интенсивный курс подготовки к экзамену.
  3. Экзаменационные материалы для подготовки к ЕГЭ-2007. Математика. М.: ООО «РУСТЕСТ», 2006. — 108с. Сост. — Клово А.Г.
  4. Задачи с параметром и другие сложные задачи. Козко А.И., Чирский В.Г. М.: МЦНМО, 2007. — 296с.
  5. ЕГЭ 2011. Математика. Задача С5. Козко А.И., Панферов В.С., Сергеев И.Н., Чирский В.Г.

Построение графиков функций

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции

Упростим формулу функции:

при х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Задача 2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

xy
02
11

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

xy
00
12

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Задача 6. Построить графики функций:

б)

г)

д)

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а)

Преобразование в одно действие типа f(x) + a.

Сдвигаем график вверх на 1:

б)

Преобразование в одно действие типа f(x — a).

Сдвигаем график вправо на 1:

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

Сдвигаем график вправо на 1:

Сдвигаем график вверх на 2:

г)

Преобразование в одно действие типа

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

д)

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.



Сжимаем график в два раза вдоль оси абсцисс:


Сдвигаем график влево на 1/2 вдоль оси абсцисс:


Отражаем график симметрично относительно оси абсцисс:

Построить график функции онлайн

Построение графиков онлайн с помощью нашего сервиса является простой задачей. Возможность построения одновременно сразу нескольких функций, помеченных разными цветами. Укажите пределы переменной и функции — и наш сервис быстро нарисует ваш график.

Построение графиков онлайн

Построение графиков онлайн

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos. Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta) )

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.


источники:

http://skysmart.ru/articles/mathematic/postroenie-grafikov-funkcij

http://matematikam.ru/calculate-online/grafik.php