Построение разностной схемы для диф уравнения

О построении разностных схем

Как уже отмечалось, построение разностных схем решения уравнений с частными производными основано на введении сетки в рассматриваемом пространстве. Узлы сетки являются расчетными точками.

Пример простейшей прямоугольной области G(z, у) с границей Г в двумерном случае показан на рис. 2.1. Стороны прямоугольника делятся на элементарные отрезки точками и . Через эти точки проводятся два семейства координатных прямых х = const и у = const, образующих сетку с прямоугольными ячейками. Любой ее узел, номер которого (i,j), определяется координатами (xi, yj). Поскольку все ячейки показанной на рис. 2.1 сетки одинаковы, такую сетку называют равномерной сеткой.

Рис. 2.1. Прямоугольная сетка

Аналогично вводятся сетки для многомерных областей, содержащих более двух измерений. На рис. 2.2 показан элемент сетки в виде прямоугольного параллелепипеда для трехмерной области.

Рис. 2.2. Элемент сетки

Прямоугольные сетки наиболее удобны при организации вычислительного алгоритма. Вместе с тем, некоторые схемы используют сетки с ячейками более сложной формы: треугольными, четырехугольными (не прямоугольными), шестиугольными и т.д.

Узлы сетки, лежащие на границе Г области G, называются граничными узлами. Все остальные узлы — внутренними. Поскольку начальные и граничные условия при постановке задач формулируются на границе расчетной области, то их можно считать заданными в граничных узлах сетки. Иногда граничные точки области не являются узлами сетки, что характерно для областей сложной формы. Тогда либо вводят дополнительные узлы на пересечении координатных линий с границей, либо границу приближенно заменяют ломаной, проходящей через близкие к границе узлы. На эту ломаную переносятся граничные условия.

В ряде случаев сложные криволинейные области с помощью перехода к новым независимым переменным удается свести к простейшему виду. Например, четырехугольную область G, изображенную на рис. 2.3, можно привести к единичному квадрату G введением новых переменных вместо х, у с помощью соотношений

Рис. 2.3. Преобразование расчетной области

К новым переменным нужно преобразовать уравнения, а также начальные и граничные условия.

Вобласти G можно ввести прямоугольную сетку, при этом в области Gей будет соответствовать сетка с неравномерно расположенными узлами и криволинейными ячейками.

В дальнейшем при построении разностных схем мы для простоты будем использовать прямоугольные сетки (или с ячейками в виде прямоугольных параллелепипедов в трехмерном случае), а уравнения будем записывать в декартовых координатах (х, у, z). На практике приходится решать задачи в различных криволинейных системах координат: полярной, цилиндрической, сферической и др. Например, если расчетную область удобно задать в полярных координатах (r,φ), то в ней сетка вводится с шагами и , соответственно, по радиус-вектору и полярному углу.

Иногда и в простой расчетной области вводят неравномерную сетку. В частности, в ряде случаев необходимо проводить сгущение узлов для более точного расчета в некоторых частях рассматриваемой области. При этом области сгущения узлов либо известны заранее, либо определяются в процессе решения задачи (например, в зависимости от градиентов искомых функций). В последнем случае получающиеся сетки называют адаптивными.

Для построения разностной схемы, как и в случае обыкновенных дифференциальных уравнений, частные производные в уравнении заменяются конечно-разностными соотношениями по некоторому шаблону. При этом точные значения искомой функции заменяются значениями сеточной функции в узлах разностной сетки.

В качестве примера построим некоторые разностные схемы для решения уравнения теплопроводности при заданных начальных и граничных условиях. Запишем смешанную краевую задачу в виде

(2.2)

где — начальное распределение температуры U(при t= 0); , — распределение температуры на концах рассматриваемого отрезка (х = 0, 1) в любой момент времени t. Заметим, что начальные и граничные условия должны быть согласованы, т.е. .

Введем равномерную прямоугольную сетку с помощью координатных линий , ; hи τ — соответственно шаги сетки по направлениям х и t. Значения функции в узлах сетки обозначим . Эти значения заменим соответствующими значениями сеточной функции , которые удовлетворяют уравнениям, образующим разностную схему. Часто верхний индекс заключают в скобки, чтобы не путать его с показателем степени. Здесь и далее скобки для краткости опушены.

Заменяя в исходном уравнении (2.2) частные производные искомой функции с помощью отношений конечных разностей, получаем разностную схему

. (2.3)

В записи этой схемы для каждого узла использован шаблон, изображенный на рис. 2.4, а.

Для одного и того же уравнения можно построить различные разностные схемы. В частности, если воспользоваться шаблоном, изображенным на рис. 2.4, б,т.е. аппроксимировать производную при :

,

то вместо (2.3) получим разностную схему

(2.4)

И в том и другом случае получается система алгебраических уравнений для определения значений сеточной функции во внутренних узлах. Значения в граничных узлах находятся из граничных условий:

(2.5)

Совокупность узлов при t = const, т. е. при фиксированном значении j, называется слоем (или, поскольку переменная tсоответствует времени, временным слоем).Схема (2.3) позволяет последовательно находить значения на -ом слое через соответствующие значения на j-ом слое. Такие схемы называются явными.

Для начала счета по схеме (2.3) при j= 1 необходимо знать решение на начальном слое при j= 0. Оно определяется начальным условием (2.2), которое запишется в виде:

(2.6)

В отличие от явной схемы каждое разностное уравнение (2.4) содержит на каждом новом слое три неизвестных значения: поэтому нельзя сразу определить эти значения через известное решение на предыдущем слое. Такие схемы называются неявными.При этом разностная схема (2.4) состоит из линейных трехточечных уравнений, т.е. каждое уравнение содержит неизвестную функцию в трех точках данного слоя. Такие системы линейных уравнений с трехдиагональной матрицей могут быть решены методом прогонки, в результате чего будут найдены значения сеточной функции в узлах.

Заметим, что в рассмотренном примере мы получаем двухслойные схемы,когда в каждое разностное уравнение входят значения функции из двух слоев: нижнего, на котором решение уже найдено, и верхнего, в узлах которого решение ищется.

Спомощью рассматриваемого способа построения разностных схем, когда входящие в уравнение отдельные частные производные заменяются конечно-разностными соотношениями для сеточной функции (или сеточными выражениями), могут быть созданы многослойные схемы, а также схемы высоких порядков точности.

Несмотря на то, что этот способ получения разностных уравнений наиболее прост и поэтому широко используется при разработке численных методов, существуют также другие способы построения разностных схем. Изложение этих вопросов читатель может найти в более полных работах по численным методам и теории разностных схем.

Разностные уравнения

Содержание:

Разностные уравнения

Понятие разницы и разностного уравнения

Если для значений переменной x1, x2, x3, . функция f (x) принимает значения f (x1), f (x2), f (x3) . , то приращения функции составляют f (x2) – f (x1), f (x3) – f (x2), .

Приращение функции при переходе от значения xi к значению xi+1 будем обозначать: В частности можно взять в качестве значения независимых переменных x и x + 1 . Разность Δf (x) = f (x + 1) — f (x) называется первой разностью или разностью первого порядка. Она может рассматриваться в свою очередь как функция от x, а потому и для нее можно определить разницу:

Введем обозначения ΔΔf (x) = Δ 2 f (x), тогда Δ 2 f (x) = f (x + 2) — 2 f (x + 1) + f (x) и называется разностью второго порядка.

Аналогично можно найти разности третьего, четвертого и т. д. порядков.

Определим разности некоторых важнейших функций.

1) Если f (x) = С, где С — постоянная величина, то
Δf (x) = f (x + 1) – f (x) = С – С = 0.

Понятно, что и все разности следующих порядков будут также равняться нулю.

2) Если f (x) = ax + b, то
Δf = Δf (x + 1) — f (x) = a (x + 1) + b — ax — b = a.

Разница первого порядка линейной функции равна постоянной, а все остальные будут равны нулю.

3) Если f (x) = ax 2 + bx + c, то

Поскольку разница первого порядка является линейной функцией, то разница второго порядка — постоянная, а все последующие разности равны нулю.

4) Если f (x) = a x , то

В экономических исследованиях часто встречаются задачи, в которых время t является независимой переменной, а зависимая переменная определяется для времени t, t + 1, t + 2 и т. д.

Обозначим yt — значение функции y в момент времени t; yt+1 — значение функции в момент, сдвинутый на одну единицу, например, на следующий час, на следующую неделю и т. д., yt+2 — значение функции y в момент, сдвинутый на две единицы и т. д.

Очевидно, что

Откуда:

За разность второго порядка, имеем или
поэтому

Аналогично можно доказать, что

Итак, любую функцию

можно представить в виде: (7.50)
и наоборот.

Определение. Уравнение
(7.51)
называется разностным уравнением n-го порядка.

Решить разностное уравнение n-го порядка — это значит найти такую ​​функцию yt, которая превращает уравнение (7.50) или (7.51) в тождество.

Решение, в котором есть произвольная постоянная, называется общим; решение, в котором постоянная отсутствует, называется частным.

Определение. Уравнение
(7.52)
где a0, a1, . an — постоянные числа, называется неоднородным разностным
уравнением n-го порядка с постоянными коэффициентами.

Если в уравнении (7.52) f (t) = 0, то уравнение называется однородным разностным уравнением n-го порядка с постоянными коэффициентами:
(7.53)

Уравнение есть однородное разностное уравнение первого порядка с постоянными коэффициентами a и b, а уравнение неоднородное разностное уравнение второго порядка с постоянными коэффициентами a, b, c.

ТЕОРЕМА 1. Если решениями однородного разностного уравнения (7.53) является y1 (t) и y2 (t), то его решением будет также функция y1 (t) + y2 (t).

ТЕОРЕМА 2. Если y (t) является решением однородного разностного уравнения (7.53), то его решением будет также функция Ay (t), где А — произвольная постоянная.

ТЕОРЕМА 3. Если y (t) — частное решение неоднородного уравнения (7.52) и y (t, A1, A2, . An) — общее решение однородного уравнения (7.53), то общим решением неоднородного разностного уравнения будет функция: y (t) + y (t, A1, A2, . An).

Эти теоремы схожи с теоремами для дифференциальных уравнений, которые были приведены нами в предыдущем разделе.

Разностные уравнения первого порядка с постоянными коэффициентами

Рассмотрим неоднородное разностное уравнение
(7.54)

Соответствующее ему однородное уравнение будет:
(7.55)

Возьмем функцию и убедимся, что она будет решением уравнения (7.55). Поскольку , тогда . Подставим yt и yt-1 в уравнение (7.55):
Итак, является решением уравнения (7.55).

По теореме (2) общее решение однородного разностного уравнения (7.55) является функция , где А — произвольная постоянная.

Пусть — частное решение неоднородного разностного уравнения (7.54). По теореме (3) общим решением неоднородного разностного уравнения (7.54) будет функция

Частное решение найти нетрудно, если f (t) = α, где α — некоторая постоянная. На самом деле, если где u — постоянная. Подставим в уравнение (7.54), имеем: u — au = α, откуда
Итак, общее решение уравнения (7.54) запишем в виде: .

Разностные уравнения второго порядка с постоянными коэффициентами

Пусть задано неоднородное разностное уравнение второго порядка с постоянными коэффициентами:
(7.56)
и соответствующее ему однородное уравнение
(7.57)

Убедимся, что функция будет решением уравнения (7.58). Подставим в уравнение (7.57) (λ ≠ 0), получим Поскольку λ ≠ 0, то поделим на λ t-2 , имеем λ 2 + aλ + b = 0 (7.58)

Это уравнение называется характеристическим уравнением для уравнения (7.57).

Здесь могут иметь место следующие три случая:

1. D = a 2 – 4b > 0, тогда уравнение (7.58) будет иметь два действительных различных корня.
Общее решение уравнения (7.57) запишется в виде:

а общее решение неоднородного уравнения (7.56) запишется так:

2. D = a 2 – 4b = 0, тогда и и

В этом случае однородное уравнение (7.57) примет вид:
(7.59)
Тогда

Легко убедиться, что решением уравнения (7.59) является также функция
Поэтому общим решением уравнения (7.59) является функция а общим решением неоднородного уравнения (7.56) функция

3. D = a 2 – 4b 2 – 5λ + 6 = 0 будет иметь действительные разные корни (D = 25 – 24 = 1 > 0), λ1 =2, λ2 = 3.
Общим решением однородного уравнения является функция

Далее положим, что yt = y — частное решение неоднородного уравнения, тогда

Таким образом, общим решением неоднородного уравнения является функция Постоянные A1 и A2 определим из начальных условий: y0 = 5, y1 = 9. Тогда для t = 0 и t = 1 соответственно будем иметь:

Решим эту систему уравнений относительно A1 и A2:

Откуда

Итак, — общее решение заданного в условии разностного уравнения.

Примеры применения разностных уравнений в экономических задачах

Пример 1. Пусть некоторая сумма средств выдается под сложный процент p, то к концу t-го года ее размер будет составлять:
Это однородное разностное уравнение первого порядка. Его решением будет функция , где A — некоторая постоянная, которую можно найти из начальных условий.

Если положить y0 = F , то A = F, откуда

Это известная формула величины фонда F, который выдается под сложный процент.

Пример 2. Пусть величина предложения сельскохозяйственной продукции в t-м году есть функция цены прошлого года а спрос на эту продукцию есть функция цены в этом году. Следовательно, спрос: а предложение

Цена равновесия для данной продукции определяется равенством:
а это разностное уравнение первого порядка.

Положим, что функция спроса определяется формулой а функция предложения — формулой

Цена равновесия запишется: то есть Решением этого уравнения является функция Постоянная A определяется из начальных условий, для t = 0 цена составляет p0.

Тогда p0 = A и решением уравнения является функция
Если начальная цена p0 = 0, то pt = 0 для всех значений t.

Следовательно, цена не подлежит изменению.

Вообще говоря, функция предложения — возрастающая, а потому b > 0; а функция спроса — убывающая, и поэтому a

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://natalibrilenova.ru/raznostnyie-uravneniya/