Построение уравнения регрессии второго порядка

Уравнение нелинейной регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Виды нелинейной регрессии

ВидКласс нелинейных моделей
  1. Полиномальное уравнение регрессии:
    y = a + bx + cx 2 (см. метод выравнивания)
  2. Гиперболическое уравнение регрессии:
  3. Квадратичное уравнение регрессии:
Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам
  1. Показательное уравнение регрессии:
  2. Экспоненциальное уравнение регрессии:
  3. Степенное уравнение регрессии:
  4. Полулогарифмическое уравнение регрессии: y = a + b lg(x)
Нелинейные по оцениваемым параметрам

Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x)ПреобразованиеМетод линеаризации
y = b x aY = ln(y); X = ln(x)Логарифмирование
y = b e axY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx 2x1 = x; x2 = x 2Замена переменных
y = a + bx + cx 2 + dx 3x1 = x; x2 = x 2 ; x3 = x 3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных

Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:

  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
ГодФактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), yСреднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х
1995872515,9
200038132281,1
200150143062
200264003947,2
200377085170,4
200498486410,3
2005124558111,9
20061528410196
20071892812602,7
20082369514940,6
20092515116856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535

Задача №1 Построение уравнения регрессии

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

Индекс розничных цен на продукты питания (х)Индекс промышленного производства (у)
110070
210579
310885
411384
511885
611885
711096
811599
9119100
1011898
1112099
12124102
13129105
14132112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение:

1. Для расчёта параметров линейной регрессии

Решаем систему нормальных уравнений относительно a и b:

Построим таблицу расчётных данных, как показано в таблице 1.

Таблица 1 Расчетные данные для оценки линейной регрессии

№ п/пхухуx 2y 2
110070700010000490074,263400,060906
210579829511025624179,925270,011712
310885918011664722583,322380,019737
411384949212769705688,984250,059336
5118851003013924722594,646110,113484
6118851003013924722594,646110,113484
7110961056012100921685,587130,108467
8115991138513225980191,249000,078293
911910011900141611000095,778490,042215
10118981156413924960494,646110,034223
11120991188014400980196,910860,021102
12124102126481537610404101,44040,005487
13129105135451664111025107,10220,020021
14132112147841742412544110,49930,013399
Итого:162912991522931905571222671299,0010,701866
Среднее значение:116,357192,7857110878,0713611,218733,357хх
8,498811,1431ххххх
72,23124,17ххххх

Среднее значение определим по формуле:

Cреднее квадратическое отклонение рассчитаем по формуле:

и занесём полученный результат в таблицу 1.

Возведя в квадрат полученное значение получим дисперсию:

Параметры уравнения можно определить также и по формулам:

Таким образом, уравнение регрессии:

Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.

Рассчитаем линейный коэффициент парной корреляции:

Связь прямая, достаточно тесная.

Определим коэффициент детерминации:

Вариация результата на 74,59% объясняется вариацией фактора х.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения .

,

следовательно, параметры уравнения определены правильно.

Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:

В среднем расчётные значения отклоняются от фактических на 5,01%.

Оценку качества уравнения регрессии проведём с помощью F-теста.

F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.

Fфакт определяется по формуле:

где n – число единиц совокупности;

m – число параметров при переменных х.

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

2. Степенная регрессия имеет вид:

Для определения параметров производят логарифмиро­вание степенной функции:

Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наи­меньших квадратов:

Построим таблицу расчётных данных, как показано в таблице 2.

Таблица 2 Расчетные данные для оценки степенной регрессии

№п/пхуlg xlg ylg x*lg y(lg x) 2(lg y) 2
1100702,0000001,8450983,6901964,0000003,404387
2105792,0211891,8976273,8354644,0852063,600989
3108852,0334241,9294193,9233264,1348123,722657
4113842,0530781,9242793,9506964,2151313,702851
5118852,0718821,9294193,9975284,2926953,722657
6118852,0718821,9294193,9975284,2926953,722657
7110962,0413931,9822714,0465944,1672843,929399
8115992,0606981,9956354,1124014,2464763,982560
91191002,0755472,0000004,1510944,3078954,000000
10118982,0718821,9912264,1255854,2926953,964981
11120992,0791811,9956354,1492874,3229953,982560
121241022,0934222,0086004,2048474,3824144,034475
131291052,1105902,0211894,2659014,4545894,085206
141321122,1205742,0492184,3455184,4968344,199295
Итого1629129928,9047427,4990456,7959759,6917254,05467
Среднее значение116,357192,785712,0646241,9642174,0568554,2636943,861048
8,498811,14310,0319450,053853ххх
72,23124,170,0010210,0029ххх

Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии

№п/пху
11007074,1644817,342920,059493519,1886
21057979,620570,3851120,007855190,0458
31088582,951804,1951330,02409660,61728
41138488,5976821,138660,05473477,1887
51188594,3584087,579610,11009960,61728
61188594,3584087,579610,11009960,61728
71109685,19619116,72230,1125410,33166
81159990,8883465,799010,08193638,6174
911910095,5240820,033840,04475952,04598
101189894,3584013,261270,03715927,18882
111209996,694235,3165630,02329138,6174
12124102101,41910,3374670,00569584,90314
13129105107,42325,8720990,023078149,1889
14132112111,07720,851630,00824369,1889
Итого162912991296,632446,41520,7030741738,357
Среднее значение116,357192,78571хххх
8,498811,1431хххх
72,23124,17хххх

Решая систему нормальных уравнений, определяем параметры логарифмической функции.

Получим линейное уравнение:

Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата . По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.

Связь достаточно тесная.

В среднем расчётные значения отклоняются от фактических на 5,02%.

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

3. Уравнение равносторонней гиперболы

Для определения параметров этого уравнения используется система нормальных уравнений:

Произведем замену переменных

и получим следующую систему нормальных уравнений:

Решая систему нормальных уравнений, определяем параметры гиперболы.

Составим таблицу расчётных данных, как показано в таблице 3.

Таблица 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуzyz
1100700,0100000000,7000000,00010004900
2105790,0095238100,7523810,00009076241
3108850,0092592590,7870370,00008577225
4113840,0088495580,7433630,00007837056
5118850,0084745760,7203390,00007187225
6118850,0084745760,7203390,00007187225
7110960,0090909090,8727270,00008269216
8115990,0086956520,8608700,00007569801
91191000,0084033610,8403360,000070610000
10118980,0084745760,8305080,00007189604
11120990,0083333330,8250000,00006949801
121241020,0080645160,8225810,000065010404
131291050,0077519380,8139530,000060111025
141321120,0075757580,8484850,000057412544
Итого:162912990,12097182311,137920,0010510122267
Среднее значение:116,357192,785710,0086408440,7955660,00007518733,357
8,498811,14310,000640820ххх
72,23124,170,000000411ххх

Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости

№п/пху
11007072,32620,0332315,411206519,1886
21057979,494050,0062540,244083190,0458
31088583,476190,0179272,32201260,61728
41138489,643210,06718131,8458577,1887
51188595,287610,121031105,834960,61728
61188595,287610,121031105,834960,61728
71109686,010270,1040699,7946510,33166
81159991,959870,07111249,5634438,6174
911910096,359570,03640413,2527252,04598
101189895,287610,0276777,35705927,18882
111209997,413670,0160242,51645338,6174
12124102101,460,0052940,29156584,90314
13129105106,16510,0110961,357478149,1889
14132112108,81710,02841910,1311369,1889
Итого:162912991298,9880,666742435,75751738,357
Среднее значение:116,357192,78571хххх
8,498811,1431хххх
72,23124,17хххх

Значения параметров регрессии a и b составили:

Связь достаточно тесная.

В среднем расчётные значения отклоняются от фактических на 4,76%.

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.

Парная регрессия и корреляция

1. Парная регрессия и корреляция

1.1. Понятие регрессии

Парной регрессией называется уравнение связи двух переменных у и х

где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением: y = a + b × x +e .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но ли-

нейных по оцениваемым параметрам:

· полиномы разных степеней

· равносторонняя гипербола:

Примеры регрессий, нелинейных по оцениваемым параметрам:

· степенная

· показательная

· экспоненциальная

Наиболее часто применяются следующие модели регрессий:

– прямой

– гиперболы

– параболы

– показательной функции

– степенная функция

1.2. Построение уравнения регрессии

Постановка задачи. По имеющимся данным n наблюдений за совместным

изменением двух параметров x и y <(xi,yi), i=1,2. n> необходимо определить

аналитическую зависимость ŷ=f(x), наилучшим образом описывающую данные наблюдений.

Построение уравнения регрессии осуществляется в два этапа (предполагает решение двух задач):

– спецификация модели (определение вида аналитической зависимости

– оценка параметров выбранной модели.

1.2.1. Спецификация модели

Парная регрессия применяется, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной.

Применяется три основных метода выбора вида аналитической зависимости:

– графический (на основе анализа поля корреляций);

– аналитический, т. е. исходя из теории изучаемой взаимосвязи;

– экспериментальный, т. е. путем сравнения величины остаточной дисперсии Dост или средней ошибки аппроксимации , рассчитанных для различных

моделей регрессии (метод перебора).

1.2.2. Оценка параметров модели

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

В случае линейной регрессии параметры а и b находятся из следующей

системы нормальных уравнений метода МНК:

(1.1)

Можно воспользоваться готовыми формулами, которые вытекают из этой

(1.2)

Для нелинейных уравнений регрессии, приводимых к линейным с помощью преобразования (x, y) → (x’, y’), система нормальных уравнений имеет

вид (1.1) в преобразованных переменных x’, y’.

Коэффициент b при факторной переменной x имеет следующую интерпретацию: он показывает, на сколько изменится в среднем величина y при изменении фактора x на 1 единицу измерения.

Линеаризующее преобразование: x’ = 1/x; y’ = y.

Уравнения (1.1) и формулы (1.2) принимают вид

Линеаризующее преобразование: x’ = x; y’ = lny.

Модифицированная экспонента: , (0 K и со знаком «–» в противном случае.

Степенная функция:

Линеаризующее преобразование: x’ = ln x; y’ = ln y.

Показательная функция:

Линеаризующее преобразование: x’ = x; y’ = lny.

Логарифмическая функция:

Линеаризующее преобразование: x’ = ln x; y’ = y.

Парабола второго порядка:

Парабола второго порядка имеет 3 параметра a0, a1, a2, которые определяются из системы трех уравнений

1.3. Оценка тесноты связи

Тесноту связи изучаемых явлений оценивает линейный коэффициент

парной корреляции rxy для линейной регрессии (–1 ≤ r xy ≤ 1)

и индекс корреляции ρxy для нелинейной регрессии

Имеет место соотношение

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент детерминации r2xy (для линейной регрессии) или индекс детерминации (для нелинейной регрессии).

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

Для оценки качества построенной модели регрессии можно использовать

показатель (коэффициент, индекс) детерминации R2 либо среднюю ошибку аппроксимации.

Чем выше показатель детерминации или чем ниже средняя ошибка аппроксимации, тем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение

расчетных значений от фактических

Построенное уравнение регрессии считается удовлетворительным, если

значение не превышает 10–12 %.

1.4. Оценка значимости уравнения регрессии, его коэффициентов,

Оценка значимости всего уравнения регрессии в целом осуществляется с

помощью F-критерия Фишера.

F-критерий Фишера заключается в проверке гипотезы Но о статистической незначимости уравнения регрессии. Для этого выполняется сравнение

фактического Fфакт и критического (табличного) Fтабл значений F-критерия

Fфакт определяется из соотношения значений факторной и остаточной

дисперсий, рассчитанных на одну степень свободы

где n – число единиц совокупности; m – число параметров при переменных.

Для линейной регрессии m = 1 .

Для нелинейной регрессии вместо r 2 xy используется R2.

Fтабл – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы k1 = m, k2 = n – m – 1 (для линейной регрессии m = 1) и уровне значимости α.

Уровень значимости α вероятность отвергнуть правильную гипотезу

при условии, что она верна. Обычно величина α принимается равной 0,05 или

Если Fтабл Fфакт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии и линейного коэффициента парной корреляции применяется

t-критерий Стьюдента и рассчитываются доверительные интервалы каждого

Согласно t-критерию выдвигается гипотеза Н0 о случайной природе показателей, т. е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия tфакт для оцениваемых коэффициентов регрессии и коэффициента корреляции путем сопоставления их значений с величиной стандартной ошибки

Стандартные ошибки параметров линейной регрессии и коэффициента

корреляции определяются по формулам

Сравнивая фактическое и критическое (табличное) значения t-статистики

tтабл и tфакт принимают или отвергают гипотезу Но.

tтабл – максимально возможное значение критерия под влиянием случайных факторов при данной степени свободы k = n–2 и уровне значимости α.

Связь между F-критерием Фишера (при k1 = 1; m =1) и t-критерием Стьюдента выражается равенством

Если tтабл tфакт, то гипотеза Но не отклоняется и признается случайная природа формирования а, b или .

Значимость коэффициента детерминации R2 (индекса корреляции) определяется с помощью F-критерия Фишера. Фактическое значение критерия Fфакт определяется по формуле

Fтабл определяется из таблицы при степенях свободы k1 = 1, k2 = n–2 и при

заданном уровне значимости α. Если Fтабл


источники:

http://ecson.ru/economics/econometrics/zadacha-1.postroenie-regressii-raschyot-korrelyatsii-oshibki-approximatsii-otsenka-znachimosti-i-prognoz.html

http://pandia.ru/text/78/146/82802.php