Построим линейное однофакторное уравнение регрессии

Уравнение регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

В сервисе для нахождения параметров регрессии используется МНК. Система нормальных уравнений для линейной регрессии: . Также можно получить ответ, используя матричный метод. см. также Статистические функции в Excel

Уравнение парной регрессии относится к уравнению регрессии первого порядка. Если эконометрическая модель содержит только одну объясняющую переменную, то она имеет название парной регрессии. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии.

Пример . Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте графическое изображение регрессионной зависимости. Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования.
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Спецификация модели — определение цели исследования и выбор экономических переменных модели.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x , т. е. модель вида:

Построение линейной однофакторной регрессионной модели зависимости результативного признака Y от фактора Х.

Линейное однофакторное уравнение регрессии имеет вид:

Коэффициенты уравнения регрессии вычисляются по формулам:

Для расчета коэффициентов строится вспомогательная табл.2.2

(расчеты проведены с применением пакета MS Excel):

Расчетная таблица для построения и анализа

Линейной модели парной регрессии

№п/п xy
2175,181357,2194,459
2177,631357,2152,838
2177,631320,4152,838
2180,08162,4123,222
2180,08124,0123,222
2180,081166,4123,222
2180,08198,0123,222
2180,081118,8123,222
2182,5318,415,612
2182,5314,415,612
2182,53150,415,612
2182,5318,415,612
2182,5310,015,612
2182,5319,615,612
2182,53116,815,612
2182,5314,415,612
2182,53126,015,612
2182,5318,415,612
2184,9814,410,006
2184,981292,410,006
2184,9814,410,006
2184,9814,410,006
2187,43126,016,406
2189,88165,6124,81
2189,88150,4124,81
2189,88150,4124,81
2194,78150,4197,634
2197,231146,41152,053
2197,23150,41152,053
2204,581102,01387,342
Всего65546,982488,71242,317
Среднее2321,672184,94773870,9675072782,46782,95641,41

Расчет коэффициентов уравнения регрессии на основе данных табл.2.2:

0,245

= 2184,9-0,245∙2321,67=1616,091

Вывод. Линейная регрессионная модель связи изучаемых признаков имеет вид уравнения

Коэффициент регрессии показывает, что при увеличении факторного признака Выручка от продажи продукциина 1 млн руб. значение результативного признака Прибыль от продажи продукции увеличивается в среднем на млн руб.

3. Проверка уравнения регрессии на адекватность[2].

1. Оценка практической пригодности построенной модели связи

по величине коэффициента детерминации R 2.

Расчет R 2 :

Вывод. Критерий практической пригодности модели связи R 2 > 0,5 не выполняется. Однако поскольку значение R 2 практически совпадает с 0,5, можно считать, что построенное регрессионное уравнение в достаточной мере отражает фактическую зависимость признаков и пригодно для практического применения.

2. Оценка статистической значимости (неслучайности) коэффициента R 2 по F-критерию Р.Фишера рассчитывается по формуле:

где m – число коэффициентов уравнения регрессии (параметров уравнения регрессии), n- число наблюдений.

Расчет значения F при n=30, m=2:

= 27,888

Табличное (критическое) значение F-критерия Fтабл имеет общий вид , где — уровень значимости, m– число коэффициентов уравнения регрессии. При уровне значимости 0,05 и m=2

Так как Fрасч>Fтабл, то величина найденного коэффициента детерминации R 2. признается неслучайной с вероятностью 0,95.

Вывод. Построенное уравнение регрессии

можно считать адекватным с надежностью 95%.

ПОСТРОЕНИЕ ОДНОФАКТОРНОГО УРАВНЕНИЯ РЕГРЕССИИ

Важнейшим этапом построения регрессионной модели (уравнения регрессии) является установление в анализе исходной информации математической функции.

Сложность заключается в том, что из множества функций необходимо найти такую, которая лучше других выражает реально существующие связи между анализируемыми признаками. Выбор типа функции может опираться на теоретические знания об изучаемом явлении, опыт предыдущих аналогичных исследований, или осуществляться эмпирически — перебором и оценкой функций разных типов и т.п.

При изучении связи экономических показателей производства (деятельности) используют различного вида уравнения прямолинейной и криволинейной связи. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму. Уравнение однофакторной (парной) линейной корреляционной связи имеет вид:

(46)

где теоретические значения результативного признака, полученные по уравнению регрессии; , коэффициенты (параметры) уравнения регрессии.

Поскольку а0 является средним значением у в точке х=0, экономическая интерпретация часто затруднена или вообще невозможна.

Коэффициент парной линейной регрессии а имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Уравнение показывает среднее значение изменения результативного признака у при изменении факторного признака х на одну единицу его измерения, т.е. вариацию у, приходящуюся на единицу вариации х. Знак а1 указывает направление этого изменения.

Параметры уравнения а0, а1 находят методом наименьших квадратов (метод решения систем уравнений, при котором в качестве решения принимается точка минимума суммы квадратов отклонений), т.е. в основу этого метода положено требование минимальности сумм квадратов отклонений эмпирических данных от выравненных :

(47)

Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

; (48)

.

Решим эту систему в общем виде

; (49)

. (50)

Параметры уравнения парной линейной регрессии иногда удобно исчислять по следующим формулам, дающим тот же результат:

, (51)

или , (52)

где

Определив значения а0, а1 и подставив их в уравнение связи , находим значения , зависящие только от заданного значения х [6].

Читайте также:
  1. II. Построение карты гидроизогипс
  2. II. Построение карты гидроизогипс
  3. Автопостроение каналов
  4. Аксиоматическое построение силлогистики.
  5. Аксиоматическое построение теории вероятностей.
  6. Алгоритм использования команд ВИД и ПОСТРОЕНИЕ
  7. Будем искать частное решение уравнения
  8. Вопрос 17. Режимы работы источника напряжения. Определение потенциалов точек цепи и их расчёт. Построение потенциальной диаграммы.
  9. Вопрос 3. Под каким номером указан вид частного решения уравнения , где — многочлены четвертой степени?
  10. Вывод закона Бернулли из уравнения Эйлера и термодинамических соотношений
│►12. Рассмотрим построение однофакторного уравнения регрессии зависимости производительности труда у от стажа работы х по данным табл. 4. (10 рабочих одной бригады заняты производством радиоэлектронных изделий, данные ранжированы по стажу их работы). Исходя из экономических соображений стаж работы выбран в качестве независимой переменной х. Сопоставление данных параллельных рядов признаков х и у показывает, что с возрастанием признака х (стажа работы), растет, хотя и не всегда, результативный признак у (производительность труда). Следовательно, между х и у существует прямая зависимость, пусть неполная, но выраженная достаточно ясно. Таблица 13 Распределение рабочих бригады по выработке и стажу работы
Исходные данныеРасчетные значения
Номер рабочегоСтаж работы, годы хДневная выработка рабочего, шт. уХ 2У 2ху
4-й4,6
6-й5,2
3-й5,8
1-й6,4
2-й7,0
7-й7,6
9-й8,2
10-й8,8
8-й9,4
5-й10,0
Итого =55 =73 =385 =565 =45173,0

Для уточнения формы связи между рассматриваемыми признаками используем графический метод. Нанесем на график точки, соответствующие значениям х, у, получим корреляционное поле, а соединив их отрезками, — ломаную регрессии* (рис. 3).

Анализируя ломаную линию, можно предположить, что возрастание выработки у идет равномерно, пропорционально росту стажа работы рабочих х. В основе этой зависимости в данных конкретных условиях лежит прямолинейная связь (см. пунктирную линию на рис. 3), которая может быть выражена простым линейным уравнением регрессии:

где — теоретические расчетные значения результативного признака (выработки одного рабочего, шт.), полученные по уравнению регрессии; а01 неизвестные параметры уравнения регрессии; х — стаж работы рабочих, годы.

Данный метод эффективен лишь при небольшом объеме совокупности и достаточно тесной связи между признаками. Более наглядную характеристику связи можно получить, построив ломаную регрессии по частным средним.

1 3 5 7 9 х, годы

Рис.3. Зависимость выработки одного рабочего у от стажа работы х (по данным табл.13)

Пользуясь расчетными значениями (табл. 13), исчислим параметры для данного уравнения регрессии:

;

Следовательно, регрессионная модель распределения выработки по стажу работы для данного примера может быть записана в виде конкретного простого уравнения регрессии:

Это уравнение характеризует зависимость среднего уровня выработки рабочими бригады от стажа работы. Расчетные значения у, найденные по данному уравнению, приведены в табл.1. Правильность расчета параметров уравнения регрес­сии может быть проверена сравнением сумм итогов граф по у и У табл.13 (при этом возможно некоторое расхождение вследствие округления расчетов). ◄

4.2. ПРОВЕРКА АДЕКВАТНОСТИ РЕГРЕССИОННОЙ МОДЕЛИ

Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным.

Корреляционный и регрессионный анализ обычно (особенно в условиях так называемого малого и среднего бизнеса) проводится для ограниченной по объему совокупности. Поэтому показатели регрессии и корреляции — пара метры уравнения регрессии, коэффициенты корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.

При численности объектов анализа до 30 единиц возникает необходимость проверки значимости (существенности) каждого коэффициента регрессии. При этом выясняют, на сколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатами действия случайных причин.

Рассмотрим t-критерий Стьюдента. Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n tтабл. В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

│►13. Для проверки значимости коэффициентов регрессии исследуемого уравнения = 4,0 + 0,6х исчислим t-критерий Стьюдента с =10-2 = 8 степенями свободы.

Рассмотрим вспомогательную таблицу (табл. 14).

Расчетные значения, необходимые для исчисления ,

-3,310,89-2,77,29-0,60,36
-2,35,29-2,14,41-0,20,04
-1,31,69-1,52,250,20,04
-0,30,09-0,90,810,60,36
-0,30,09-0,30,090,00,0
0,70,490,30,090,40,16
0,70,490,90,81-0,20,04
1,72,891,52,250,20,04
2,77,292,14,410,60,36
1,72,892,77,29-1,01,0
Итого32,1029,702,40

Средние квадратические отклонения (табл. 14):

Расчетные значения t-критерия Стьюдента:

По таблице распределения Стьюдента для =8 находим критическое значение t-критерия: (tнабл=3,307 при α=0,05).

Поскольку расчетное значение tрасч>tтабл, оба параметра а0, а1 признаются значимыми по величине). ◄

Можно провести экономическую интерпретацию параметров уравнения регрессии

После проверки адекватности, установления точности и надежности построенной модели (уравнения регрессии) ее необходимо проанализировать. Прежде всего, нужно проверить согласуются ли знаки параметров с теоретическими представлениями и соображениями о направлении влияния признака-фактора на результативный признак (показатель).

В , характеризующем зависимость выработки за смену рабочим у от стажа работы х, параметр а1>0. Следовательно, с возрастанием стажа выработка увеличивается.

Из уравнения следует, что возрастание на 1 год стажа рабочего приводит к увеличению им дневной выработки в среднем на 0,6 изделия (величина параметра а1).

Для удобства интерпретации параметра а1 используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле, %:

(57)

В рассматриваемом примере

.

Следовательно, с возрастанием стажа работы на 1% следует ожидать повышения производительности труда в среднем на 0,45%.

Этот вывод справедлив только для изучаемой совокупности рабочих при конкретных условиях работы.

Если данная совокупность и условия работы типичны, то коэффициент регрессии может быть использован для нормирования и планирования производительности труда рабочих этой профессии.

Имеет смысл вычислить остатки , характеризующие отклонение i-х наблюдений от значений, которые следует ожидать в среднем.

Анализируя остатки, можно сделать ряд практических выводов. Значение остатков (табл. 7) имеют как положительные, так и отрицательные отклонения от ожидаемого уровня анализируемого показателя. Экономический интерес представляют выработки рабочих, обозначенные номерами: 5; 1; 4; 8; 7, поскольку их выработки отличаются наибольшими отклонениями. Тем самым выявляются передовые рабочие – номера 1; 8; 7, обеспечивающие наибольшее повышение средней выработки (наибольшие положительные остатки) и отстающие, требующие особого внимания рабочие – номера 5, 4 (наибольшие отрицательные остатки). В итоге положительные отклонения выработки большинства рабочих уравновешиваются отрицательными отклонениями небольшого числа рабочих, т.е. .

Дата добавления: 2014-12-23 ; просмотров: 206 ; Нарушение авторских прав


источники:

http://lektsii.org/12-24406.html

http://lektsii.com/1-42081.html