Построить график системы уравнений матлаб

Решение систем нелинейных уравнений в Matlab

Доброго времени суток! В этой статье мы поговорим о решении систем нелинейных алгебраических уравнений в Matlab. Вслед за решением нелинейных уравнений, переходим к их системам, рассмотрим несколько методов реализации в Matlab.

Общая информация

Итак, в прошлой статье мы рассмотрели нелинейные уравнения и теперь необходимо решить системы таких уравнений. Система представляет собой набор нелинейных уравнений (их может быть два или более), для которых иногда возможно найти решение, которое будет подходить ко всем уравнениям в системе.

В стандартном виде, количество неизвестных переменных равно количеству уравнений в системе. Необходимо найти набор неизвестных переменных, которые при подставлении в уравнения будут приближать значение уравнения к 0. Иногда таких наборов может быть несколько, даже бесконечно много, а иногда решений не существует.

Чтобы решить СНАУ, необходимо воспользоваться итеративными методами. Это методы, которые за определенное количество шагов получают решение с определенной точностью. Также очень важно при решении задать достаточно близкое начальное приближение, то есть такой набор переменных, которые близки к решению. Если решается система из 2 уравнений, то приближение находится с помощью построение графика двух функций.

Далее, мы рассмотрим стандартный оператор Matlab для решения систем нелинейных алгебраических уравнений, а также напишем метод простых итераций и метод Ньютона.

Оператор Matlab для решения СНАУ

В среде Matlab существует оператор fsolve, который позволяет решить систему нелинейных уравнений. Сразу рассмотрим задачу, которую, забегая вперед, решим и другими методами для проверки.

Решить систему нелинейных уравнений с точность 10 -2 :
cos(x-1) + y = 0.5
x-cos(y) = 3

Нам дана система из 2 нелинейных уравнений и сначала лучше всего построить график. Воспользуемся командой ezplot в Matlab, только не забудем преобразовать уравнения к стандартному виду, где правая часть равна 0:

Функция ezplot строит график, принимая символьную запись уравнения, а для задания цвета и толщины линии воспользуемся функцией set. Посмотрим на вывод:

Как видно из графика, есть одно пересечение функций — то есть одно единственное решение данной системы нелинейных уравнений. И, как было сказано, по графику найдем приближение. Возьмем его как (3.0, 1.0). Теперь найдем решение с его помощью:

Создадим функцию m-файлом fun.m и поместим туда следующий код:

Заметьте, что эта функция принимает вектор приближений и возвращает вектор значений функции. То есть, вместо x здесь x(1), а вместо y — x(2). Это необходимо, потому что fsolve работает с векторами, а не с отдельными переменными.

И наконец, допишем функцию fsolve к коду построения графика таким образом:

Таким образом у нас образуется два m-файла. Первый строит график и вызывает функцию fsolve, а второй необходим для расчета самих значений функций. Если вы что-то не поняли, то в конце статьи будут исходники.

И в конце, приведем результаты:

xr (это вектор решений) =
3.3559 1.2069

fr (это значения функций при таких xr, они должны быть близки к 0) =
1.0e-09 *
0.5420 0.6829

ex (параметр сходимости, если он равен 1, то все сошлось) =
1

И, как же без графика с ответом:

Метод простых итераций в Matlab для решения СНАУ

Теперь переходим к методам, которые запрограммируем сами. Первый из них — метод простых итераций. Он заключается в том, что итеративно приближается к решению, конечно же, с заданной точностью. Алгоритм метода достаточно прост:

  1. Если возможно, строим график.
  2. Из каждого уравнения выражаем неизвестную переменную след. образом: из 1 уравнения выражаем x1, из второго — x2, и т.д.
  3. Выбираем начальное приближение X0, например (3.0 1.0)
  4. Рассчитываем значение x1, x2. xn, которые получили на шаге 2, подставив значения из приближения X0.
  5. Проверяем условие сходимости, (X-X0) должно быть меньше точности
  6. Если 5 пункт не выполнился, то повторяем 4 пункт.

И перейдем к практике, тут станет все понятнее.
Решить систему нелинейных уравнений методом простых итераций с точность 10 -2 :
cos(x-1) + y = 0.5
x-cos(y) = 3

График мы уже строили в предыдущем пункте, поэтому переходим к преобразованию. Увидим, что x из первого уравнения выразить сложно, поэтому поменяем местами уравнения, это не повлияет на решение:

x-cos(y) = 3
cos(x-1) + y = 0.5

Далее приведем код в Matlab:

В этой части мы выразили x1 и x2 (у нас это ‘x’ и ‘y’) и задали точность.

В этой части в цикле выполняются пункты 4-6. То есть итеративно меняются значения x и y, пока отличия от предыдущего значения не станет меньше заданной точности.

k = 10
x = 3.3587
y = 1.2088

Как видно, результаты немного отличаются от предыдущего пункта. Это связано с заданной точностью, можете попробовать поменять точность и увидите, что результаты станут такими же, как и при решении стандартным методом Matlab.

Метод Ньютона в Matlab для решения СНАУ

Решение систем нелинейных уравнений в Matlab методом Ньютона является более эффективным, чем использование метода простых итераций. Сразу же представим алгоритм, а затем перейдем к реализации.

  1. Если возможно, строим график.
  2. Выбираем начальное приближение X0, например (3.0 1.0)
  3. Рассчитываем матрицу Якоби w, это матрица частных производных каждого уравнения, считаем ее определитель для X0.
  4. Находим вектор приращений, который рассчитывается как dx = -w -1 * f(X0)
  5. Находим вектор решения X = X0 + dx
  6. Проверяем условие сходимости, (X-X0) должно быть меньше точности

Далее, решим тот же пример, что и в предыдущих пунктах. Его график мы уже строили и начальное приближение останется таким же.
Решить систему нелинейных уравнений методом Ньютона с точность 10 -2 :
cos(x-1) + y = 0.5
x-cos(y) = 3

Перейдем к коду:

Сначала зададим начальное приближение. Затем необходимо просчитать матрицу Якоби, то есть частные производные по всем переменным. Воспользуемся символьным дифференцированием в Matlab, а именно командой diff с использованием символьных переменных.

Далее, сделаем первую итерацию метода, чтобы получить вектор выходных значений X, а потом уже сравнивать его с приближением в цикле.

В этой части кода выполняем первую итерацию, чтобы получить вектор решения и сравнивать его с вектором начального приближения. Отметим, чтобы посчитать значение символьной функции в Matlab, необходимо воспользоваться функцией subs. Эта функция заменяет переменную на числовое значение. Затем функция double рассчитает это числовое значение.

Все действия, которые были выполнены для расчета производных, на самом деле можно было не производить, а сразу же задать производные. Именно так мы и поступим в цикле.

В этой части кода выполняется цикл по расчету решения с заданной точностью. Еще раз отметим, что если в первой итерации до цикла были использованы функции diff, double и subs для вычисления производной в Matlab, то в самом цикле матрица якоби была явно задана этими частными производными. Это сделано, чтобы показать возможности среды Matlab.

За 3 итерации достигнут правильный результат. Также важно сказать, что иногда такие методы могут зацикливаться и не закончить расчеты. Чтобы такого не было, мы прописали проверку на количество итераций и запретили выполнение более 100 итераций.

Заключение

В этой статье мы познакомились с основными понятиями систем нелинейных алгебраических уравнений в Matlab. Рассмотрели несколько вариантов их решения, как стандартными операторами Matlab, так и запрограммированными методами простых итераций и Ньютона.

Решение и моделирование линейного алгебраическое система уравнение в Matlab

РЕШЕНИЕ И МОДЕЛИРОВАНИЕ ЛИНЕЙНОГО АЛГЕБРАИЧЕСКОЕ СИСТЕМА УРАВНЕНИЕ В MATLAB

Ш. М. Туймуродов (преподаватель, Каршинский филиал ТУИТ)

(магистрантка, Каршинский филиал ТУИТ)

В моделировании разновидные объекты и процессы повстречаются в алгебраической, трансцендентной, линейной и других систем уравнений. Оценить правильность уравнений и решить их в моделировании играет большую роль. Построение уравнений определяются из их особенностей. У всех из таких способов есть свои особенности, чтобы решить их понадобится специальные знания. Увеличение неизвестных построенных моделей и с увеличением виды факторы усложняются их решение. По этому, в решении трудностей использование информационно-коммуникационных технологий облегчает работу и играет нужную роль в получении точного ответа.

Для решении разнотипных математических задач, создана система Matlab, при ней существуют его специальные функции. С помощью этих функций решаются задачи в частном виде.

Мы покажем решение системы линейно-алгебраических уравнений с помощью функций программы Matlab и моделировании в среде Simulink.

Дана система линейно-алгебраического уравнения:

Здесь а11, а22,…….,аnn – неизменяемые коэффициенты, х1, х2,……. хn — неизвестные, b1, b2,……. bn – свободные члены.

Нам требуется решить следующую систему линейно-алгебраического уравнения:

Через окно Command Window системы Matlab, вводим следующие коды, при этом найдется решение системы уравнения.

Для решения системы линейно-алгебраических уравнений (1) из система уравнений определяем следующие матрицы:

A*B=C, отсюда вычисляем неизвестные матрицы B, оно будет выглядеть следующим образом:

,

Здесь A-1 обратная матрица для матрицы A

Чтобы решить систему линейно-алгебраических уравнений в среде матриц, определяем элементы матрицы из системы уравнений и вводим их в окно команд программы Matlab:

>> C=[14;3] % матрица состоит из свободных членов

>> A1=inv(A) %A1 обратная матрица для матрицы

>> B=A1*C % B означает корень уравнения матрицы x1 и x2

Способ моделирования Matlab/Simulink

1-способ: При решении системы уравнений состоящие из неизменяемых чисел вводим каждый эквивалент дифференциальной величины . В среде Matlab/Simulink для произведения модели пишется следующий вид системы уравнений:

Загрузив программную систему Matlab и библиотечную панель Simulink Library Browser, выбераем пользовательский блок: Gain (умножение неизменяемого коэффициента в сигнал ), Constant (источник неизменяемого сигнала ), Integrator (интегральный сигнал), Display (произведение цифрового сигнала в виде числа) Scope (виртуальный оцилограф). В виртуальным осцилографе видно то, что графическая функция означает, что с истечением времени, продолжается часть неизменяемой системы уравнения. А в дисплеи системы уравнение цифрового решения отображается на экране в виде числа. Блок Simulink в составе Matlab для математических задач основан на разработке проектирования, сбора сложных устройств электроники и разработки их математических моделей.

Пользовательские блоки: Display, Constant, Gain, Sum, Integrator, Mux.

Рис 1. Построение моделей системы линейно-алгебраических уравнений и изображения графика в оциллографе

2-способ: Из панели библиотеки отделения Ports&Subsystems выбирается команда Subsystem и настраивается его составная структура, в зависимости от числа неизвестных чисел блоков Gain и увеличивается число блоков multiplexor в зависимости от числа уравнений. Входящие сигналы Multipleksora In1,In2,In3 в выходящие Out1 с раздела Math operations, вращающие на значения ноль вводится Algebraic Constraint. Вводим соответствующие коэффиценты в состав параметров в каждый блок Gain. После процесса моделирования нажимаем кнопку Run и в результате на экране можно увидеть ответ системы уравнений.

Рис 2. Настройка составного строения Мултиплексора

Пользовательские блоки: Subsystem, Display, Constant, Gain, Algebraic Constraint, Sum, Mux.

Рис 3. Схематический состав решения системы линейно — алгебраического уравнения с помощью модели мултиплексора

Таким образом, мы познакомились с системой Matlab и решения систем линейно-алгебраических уравнений помощью стандартных функций матрицы и способами моделирование Simulink. С помощью этих способов создаётся оптимизирование системы произведения, моделирование объектов и процесс оценивания правильности построения моделей и способы их решения. Нужно отметить, что курс «Высшая математика» из точных наук работает с матрицами, выполняет разные операции над ними и разрабатывает разные способы решения линейных уравнений. Особенно с помощью способа Matlab/Simulink моделирование линейных уравнений занимает важное место современной цифровой технике, в изучение телекоммуникационных технологий.

, , . Математическое и компьютерное моделирование процессов и систем в среде MATLAB/SIMULINK. Киев-2008, ст-18-22. Hally More. MATLAB for engineers. Prentice Hall 2012 y. Page.441 MATLAB. Учебное пособие. ГУИА. 2005. – 143 с. , . Методы решения математических задач в Maple. Белгород 2001 г. Ст-22. . Simulink 5/6/7. Самоучитель. ДМК издательство. Москва-2008 г.

MATLAB — алгебра

До сих пор мы видели, что все примеры работают как в MATLAB, так и в его GNU, альтернативно называемом Octave. Но для решения основных алгебраических уравнений и MATLAB, и Octave немного отличаются, поэтому мы постараемся охватить MATLAB и Octave в отдельных разделах.

Мы также обсудим факторизацию и упрощение алгебраических выражений.

Решение основных алгебраических уравнений в MATLAB

Функция решения используется для решения алгебраических уравнений. В простейшем виде функция решения принимает в качестве аргумента уравнение, заключенное в кавычки.

Например, давайте решим для х в уравнении х-5 = 0

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Вы также можете вызвать функцию решения как —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Вы можете даже не включать правую часть уравнения —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Если в уравнение входит несколько символов, то по умолчанию MATLAB предполагает, что вы решаете для x, однако функция решения имеет другую форму —

где вы также можете упомянуть переменную.

Например, давайте решим уравнение v — u — 3t 2 = 0, для v. В этом случае мы должны написать —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Решение основных алгебраических уравнений в октаве

Функция корней используется для решения алгебраических уравнений в Octave, и вы можете написать приведенные выше примеры следующим образом:

Например, давайте решим для х в уравнении х-5 = 0

Octave выполнит приведенный выше оператор и вернет следующий результат —

Вы также можете вызвать функцию решения как —

Octave выполнит приведенный выше оператор и вернет следующий результат —

Решение квадратичных уравнений в MATLAB

Функция решения также может решать уравнения более высокого порядка. Он часто используется для решения квадратных уравнений. Функция возвращает корни уравнения в массиве.

В следующем примере решается квадратное уравнение x 2 -7x +12 = 0. Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Решение квадратичных уравнений в октаве

В следующем примере решается квадратное уравнение x 2 -7x +12 = 0 в октаве. Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Решение уравнений высшего порядка в MATLAB

Функция решения также может решать уравнения более высокого порядка. Например, давайте решим кубическое уравнение как (x-3) 2 (x-7) = 0

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

В случае уравнений более высокого порядка корни длинные, содержащие много членов. Вы можете получить числовое значение таких корней, преобразовав их в двойные. В следующем примере решается уравнение четвертого порядка x 4 — 7x 3 + 3x 2 — 5x + 9 = 0.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он возвращает следующий результат —

Обратите внимание, что последние два корня являются комплексными числами.

Решение уравнений высшего порядка в октаве

В следующем примере решается уравнение четвертого порядка x 4 — 7x 3 + 3x 2 — 5x + 9 = 0.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он возвращает следующий результат —

Решение системы уравнений в MATLAB

Функция решения также может быть использована для генерации решений систем уравнений, включающих более одной переменной. Давайте рассмотрим простой пример, чтобы продемонстрировать это использование.

Давайте решим уравнения —

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Таким же образом вы можете решать большие линейные системы. Рассмотрим следующую систему уравнений —

Решающая система уравнений в октаве

У нас есть немного другой подход к решению системы ‘n’ линейных уравнений с ‘n’ неизвестными. Давайте рассмотрим простой пример, чтобы продемонстрировать это использование.

Давайте решим уравнения —

Такая система линейных уравнений может быть записана в виде единого матричного уравнения Ax = b, где A — матрица коэффициентов, b — вектор столбцов, содержащий правую часть линейных уравнений, а x — вектор столбцов, представляющий решение как показано в программе ниже —

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Таким же образом, вы можете решить большие линейные системы, как указано ниже —

Разложение и сбор уравнений в MATLAB

Функция расширения и сбора расширяет и собирает уравнение соответственно. Следующий пример демонстрирует понятия —

Когда вы работаете со многими символическими функциями, вы должны объявить, что ваши переменные являются символическими.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Расширяя и собирая уравнения в октаве

Вам нужно иметь символьный пакет, который обеспечивает расширение и функцию сбора для расширения и сбора уравнения, соответственно. Следующий пример демонстрирует понятия —

Когда вы работаете со многими символическими функциями, вы должны объявить, что ваши переменные являются символическими, но у Octave другой подход к определению символических переменных. Обратите внимание на использование Sin и Cos , которые также определены в символической упаковке.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Факторизация и упрощение алгебраических выражений

Факторная функция разлагает выражение, а функция упрощения упрощает выражение. Следующий пример демонстрирует концепцию —

пример

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —


источники:

http://pandia.ru/text/80/612/27239.php

http://coderlessons.com/tutorials/kompiuternoe-programmirovanie/uznaite-matlab/matlab-algebra