Построить матрицу по виду уравнения

Уравнение множественной регрессии

Назначение сервиса . С помощью онлайн-калькулятора можно найти следующие показатели:

  • уравнение множественной регрессии, матрица парных коэффициентов корреляции, средние коэффициенты эластичности для линейной регрессии;
  • множественный коэффициент детерминации, доверительные интервалы для индивидуального и среднего значения результативного признака;

Кроме этого проводится проверка на автокорреляцию остатков и гетероскедастичность.

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Отбор факторов обычно осуществляется в два этапа:

  1. теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
  2. количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции). Научно обоснованное решение задач подобного вида также осуществляется с помощью дисперсионного анализа — однофакторного, если проверяется существенность влияния того или иного фактора на рассматриваемый признак, или многофакторного в случае изучения влияния на него комбинации факторов.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

  1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
  2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
  3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность — тесная линейная связь между факторами.

Пример . Постройте регрессионную модель с 2-мя объясняющими переменными (множественная регрессия). Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели.
Решение.
К исходной матрице X добавим единичный столбец, получив новую матрицу X

1514.5
11218
1612
1713
1814

Матрица Y

9
13
16
14
21

Транспонируем матрицу X, получаем X T :

11111
512678
14.518121314
Умножаем матрицы, X T X =
53871,5
38318563,5
71,5563,51043,25

В матрице, (X T X) число 5, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы X T и 1-го столбца матрицы X

Умножаем матрицы, X T Y =
73
563
1032,5

Находим обратную матрицу (X T X) -1

13.990.64-1.3
0.640.1-0.0988
-1.3-0.09880.14

Вектор оценок коэффициентов регрессии равен

(X T X) -1 X T Y = y(x) =
13,990,64-1,3
0,640,1-0,0988
-1,3-0,09880,14
*
73
563
1032,5
=
34,66
1,97
-2,45

Получили оценку уравнения регрессии: Y = 34.66 + 1.97X1-2.45X2
Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы о равенстве нулю коэффициент детерминации рассчитанного по данным генеральной совокупности. Для ее проверки используют F-критерий Фишера.
R 2 = 1 — s 2 e/∑(yi — yср) 2 = 1 — 33.18/77.2 = 0.57
F = R 2 /(1 — R 2 )*(n — m -1)/m = 0.57/(1 — 0.57)*(5-2-1)/2 = 1.33
Табличное значение при степенях свободы k1 = 2 и k2 = n-m-1 = 5 — 2 -1 = 2, Fkp(2;2) = 19
Поскольку фактическое значение F = 1.33 Пример №2 . Приведены данные за 15 лет по темпам прироста заработной платы Y (%), производительности труда X1 (%), а также по уровню инфляции X2 (%).

Год123456789101112131415
X13,52,86,34,53,11,57,66,74,22,74,53,55,02,32,8
X24,53,03,13,83,81,12,33,67,58,03,94,76,16,93,5
Y9,06,08,99,07,13,26,59,114,611,99,28,812,012,55,7

Решение. Подготовим данные для вставки из MS Excel (как транспонировать таблицу для сервиса см. Задание №2) .

Включаем в отчет: Проверка общего качества уравнения множественной регрессии (F-статистика. Критерий Фишера, Проверка на наличие автокорреляции),

После нажатия на кнопку Дале получаем готовое решение.
Уравнение регрессии (оценка уравнения регрессии):
Y = 0.2706 + 0.5257X1 + 1.4798X2
Скачать.

Качество построенного уравнения регрессии проверяется с помощью критерия Фишера (п. 6 отчета).

Пример №3 .
В таблице представлены данные о ВВП, объемах потребления и инвестициях некоторых стран.

ВВП16331,9716763,3517492,2218473,8319187,6420066,2521281,7822326,8623125,90
Потребление в текущих ценах771,92814,28735,60788,54853,62900,39999,551076,371117,51
Инвестиции в текущих ценах176,64173,15151,96171,62192,26198,71227,17259,07259,85

Решение:
Для проверки полученных расчетов используем инструменты Microsoft Excel «Анализ данных» (см. пример).

Пример №4 . На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:

  1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
  2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
  3. Определить стандартизованные коэффициенты регрессии (b-коэффициенты). Сделать вывод.
  4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
  5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.

Решение. Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор получается из выражения:
s = (X T X) -1 X T Y
Матрица X

13.910
13.914
13.715
1416
13.817
14.819
15.419
14.420
15.320
16.820
1621
16.422
16.822
17.225
1828
18.229
18.130
18.531
19.632
1936

Матрица Y
7
7
7
7
7
7
8
8
8
10
9
11
9
11
12
12
12
12
14
14

Матрица X T
11111111111111111111
3.93.93.743.84.85.44.45.36.866.46.87.288.28.18.59.69
1014151617191920202021222225282930313236

Умножаем матрицы, (X T X)

Умножаем матрицы, (X T Y)

Находим определитель det(X T X) T = 139940.08
Находим обратную матрицу (X T X) -1

Уравнение регрессии
Y = 1.8353 + 0.9459X 1 + 0.0856X 2
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка e = Y — X*s

0.62
0.28
0.38
0.01
0.11
-1
-0.57
0.29
-0.56
0.02
-0.31
1.23
-1.15
0.21
0.2
-0.07
-0.07
-0.53
0.34
0.57

se 2 = (Y — X*s) T (Y — X*s)
Несмещенная оценка дисперсии равна

Оценка среднеквадратичного отклонения равна

Найдем оценку ковариационной матрицы вектора k = σ*(X T X) -1

k(x) = 0.36
0,619-0,0262-0,0183
-0,02620,126-0,0338
-0,0183-0,03380,0102
=
0,222-0,00939-0,00654
-0,009390,0452-0,0121
-0,00654-0,01210,00366

Дисперсии параметров модели определяются соотношением S 2 i = Kii, т.е. это элементы, лежащие на главной диагонали
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции (от 0 до 1)

Связь между признаком Y факторами X сильная
Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора хi при неизменном уровне других факторов определяются по стандартной формуле линейного коэффициента корреляции — последовательно берутся пары yx1,yx2. , x1x2, x1x3.. и так далее и для каждой пары находится коэффициент корреляции

Коэффициент детерминации
R 2 = 0.97 2 = 0.95, т.е. в 95% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл: Tтабл (n-m-1;a) = (17;0.05) = 1.74
Поскольку Tнабл Fkp, то коэффициент детерминации статистически значим и уравнение регрессии статистически надежно

Построение парной регрессионной модели

Рекомендации к решению контрольной работы.

Статистические данные по экономике можно получить на странице Россия в цифрах.
После определения зависимой и объясняющих переменных можно воспользоваться сервисом Множественная регрессия. Регрессионную модель с 2-мя объясняющими переменными можно построить используя матричный метод нахождения параметров уравнения регрессии или метод Крамера для нахождения параметров уравнения регрессии.

Пример №3 . Исследуется зависимость размера дивидендов y акций группы компаний от доходности акций x1, дохода компании x2 и объема инвестиций в расширение и модернизацию производства x3. Исходные данные представлены выборкой объема n=50.

Тема I. Парная линейная регрессия
Постройте парные линейные регрессии — зависимости признака y от факторов x1, x2, x3 взятых по отдельности. Для каждой объясняющей переменной:

  1. Постройте диаграмму рассеяния (поле корреляции). При построении выберите тип диаграммы «Точечная» (без отрезков, соединяющих точки).
  2. Вычислите коэффициенты уравнения выборочной парной линейной регрессии (для вычисления коэффициентов регрессии воспользуйтесь встроенной функцией ЛИНЕЙН (функция находится в категории «Статистические») или надстройкой Пакет Анализа), коэффициент детерминации, коэффициент корреляции (функция КОРЕЛЛ), среднюю ошибку аппроксимации.
  3. Запишите полученное уравнение выборочной регрессии. Дайте интерпретацию найденным в предыдущем пункте значениям.
  4. Постройте на поле корреляции прямую линию выборочной регрессии по точкам .
  5. Постройте диаграмму остатков.
  6. Проверьте статистическую значимость коэффициентов регрессии по критерию Стьюдента (табличное значение определите с помощью функции СТЬЮДРАСПОБР) и всего уравнения в целом по критерию Фишера (табличное значение Fтабл определите с помощью функции FРАСПОБР).
  7. Постройте доверительные интервалы для коэффициентов регрессии. Дайте им интерпретацию.
  8. Постройте прогноз для значения фактора, на 50% превышающего его среднее значение.
  9. Постройте доверительный интервал прогноза. Дайте ему экономическую интерпретацию.
  10. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемого фактора на показатель.

Тема II. Множественная линейная регрессия
1. Постройте выборочную множественную линейную регрессию показателя на все указанные факторы. Запишите полученное уравнение, дайте ему экономическую интерпретацию.
2. Определите коэффициент детерминации, дайте ему интерпретацию. Вычислите среднюю абсолютную ошибку аппроксимации и дайте ей интерпретацию.
3. Проверьте статистическую значимость каждого из коэффициентов и всего уравнения в целом.
4. Постройте диаграмму остатков.
5. Постройте доверительные интервалы коэффициентов. Для статистически значимых коэффициентов дайте интерпретации доверительных интервалов.
6. Постройте точечный прогноз значения показателя y при значениях факторов, на 50% превышающих их средние значения.
7. Постройте доверительный интервал прогноза, дайте ему экономическую интерпретацию.
8. Постройте матрицу коэффициентов выборочной корреляции между показателем и факторами. Сделайте вывод о наличии проблемы мультиколлинеарности.
9. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемых факторов на показатель.

Матрицы и системы линейных уравнений

Содержание:

Матрицы и системы линейных уравнений. Матричная запись системы линейных уравнений

Одно из важных применений матриц связано с системами линейных уравнений. Рассмотрим систему

(1)

и соответствующие ей матрицы

Тогда систему (1) можно заменить единственным уравнением АХ = В.

Уравнение (2) называют матричной записью системы (1). Например, система

в матричной записи выглядит так:

Заметим, что матричную запись систем линейных уравнений применяли древнекитайские математики во в. до н.э., а в европейской науке она применяется с XIX

Обратная, вырожденная и невырожденная матрицы

Рассмотрим вопросы, связанные с умножением квадратных матриц порядка . Тогда произведение АВ имеет смысл для любых матриц А и В . Мы уже вводили понятие единичной матрицы

и говорили о том, что для любой квадратной матрицы А выполняется свойство АЕ = ЕА = А.

Известно, что любого числа существует обратное число , для которого .

Нечто подобное имеет место и для квадратных матриц, причем роль условия играет своеобразное условие невырожденности матрицы А.

Определение 1. Пусть А — квадратная матрица порядка . Квадратная матрица того же порядка называется обратной для А, если .

Для обратных матриц выполняется свойство: .

Заметим, что строки матрицы А — это арифметические векторы из , поэтому можно ставить вопрос об их линейной зависимости или независимости.

Определение 2. Квадратная матрица А называется невырожденной, если ее строки линейно независимы, и вырожденной в противном случае.

В лекции 1 мы указывали, что линейно независимая система векторов не может содержать нулевой вектор. Т.о., в невырожденной матрице не может быть нулевых строк. Над строками матрицы можно совершать элементарные преобразования:

1) переставлять строки;

2) вычеркивать нулевую строку;

3) умножать строку на число ;

4) прибавлять к одной из строк другую строку, умноженную на любое число. Заметим, что речь идет о тех же самых элементарных преобразованиях, которые используются в методе Гаусса, с той лишь разницей, что теперь это строки матрицы, а не уравнения системы.

Теорема 1. Если над строками невырожденной матрицы А проделать элементарные преобразования, то получим снова невырожденную матрицу.

Теорема 2. Для любой невырожденной матрицы А существует обратная матрица .

Метод Жордана-Гаусса решения матричных уравнений

Рассмотрим матричное уравнение

, (3)

где А и В — две данные матрицы, X — искомая матрица. Существенно, что А — квадратная матрица порядка . В частном случае, когда В = Е, искомая матрица X будет обратной к А , т.е.

Эффективным методом решения матричных уравнений (3) является метод полного исключения Жордана-Гаусса.

Метод Жордана-Гаусса. Пусть А — невырожденная матрица. Припишем к ней (например, справа) матрицу В и далее будем работать уже со «сдвоенной» матрицей:

Если, выполняя элементарные преобразования над строками этой матрицы, привести ее левую часть к единичной матрице , то правая часть приведется к искомой матрице X. Фактически, метод Жордана-Гаусса можно представить следующей схемой:

В частном случае, когда нужно найти обратную матрицу надо совершить переход:

.

Пример №26

Методом Жордана-Гаусса для матрицы

найти обратную матрицу

Решение:

Составим «сдвоенную» матрицу

С помощью элементарных преобразований приведем ее левую часть к единичной матрице :

Правее вертикальной черты получилась обратная матрица :

Замечание 1. При нахождении обратной матрицы методом Жордана-Гаусса возможны вычислительные ошибки. Поэтому желательно делать проверку:

.

Решение системы с помощью обратной матрицы

Рассмотрим произвольную систему линейных уравнений с неизвестными:

Запишем эту систему матричным уравнением АХ — В,

Теорема 3. Пусть квадратная матрица А является невырожденной. Тогда решением матричного уравнения АХ = В будет

.

Доказательство. Используя очевидные преобразования, получим

. Теорема доказана.

Замечание 2. Результат, полученный при доказательстве теоремы 3, часто называют методом обратной матрицы.

Пример №27

Решить систему методом обратной матрицы:

Решение:

Этой системе соответствуют матрицы:

Подобно тому, как это делалось в примере 1, найдем обратную матрицу к матрице А:

Используя теорему 3, получим

Итак, наша система имеет решение: . Проверкой убеждаемся в том, что оно правильное.

Эта лекция взята из раздела о предмете высшая математика, там вы найдёте другие лекци по всем темам высшей математики:

Высшая математика: полный курс лекций

Другие темы которые вам помогут понять высшую математику:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Матричные уравнения

Рассмотрим матричное уравнение вида

где и — данные матрицы, имеющие одинаковое количество строк, причем матрица квадратная. Требуется найти матрицу , удовлетворяющую уравнению (4.5).

Теорема 4.2 о существовании и единственности решения матричного уравнения (4.5). Если определитель матрицы отличен от нуля, то матричное уравнение (4.5) имеет единственное решение .

В самом деле, подставляя в левую часть равенства (4.5), получаем , т.е. правую часть этого равенства.

Заметим, что решением матричного уравнения служит обратная матрица .

Рассмотрим также матричное уравнение вида

где и — данные матрицы, имеющие одинаковое количество столбцов, причем матрица квадратная. Требуется найти матрицу , удовлетворяющую уравнению (4.6).

Теорема 4.3 о существовании и единственности решения матричного уравнения (4.6). Если определитель матрицы отличен от нуля, то уравнение (4.6) имеет единственное решение .

Заметим, что матрица является как бы «левым» частным от «деления» матрицы на матрицу , поскольку матрица в (4.5) умножается на слева, а матрица — «правым» частным, так как матрица в (4.6) умножается на справа.

Пример 4.5. Даны матрицы

Решить уравнения: а) ; б) ; в) .

Решение. Обратная матрица была найдена в примере 4.2.

а) Решение уравнения находим, умножая обе его части слева на

б) Уравнение не имеет решений, так как матрицы и имеют разное количество столбцов .

в) Решение уравнения находим, умножая обе его части справа на

Пример 4.6. Решить уравнение: , где .

Решение. Преобразуя левую часть уравнения:

Следовательно, . Обратная матрица найдена в примере 4.2:

Пример 4.7. Решить уравнение , где

Решение. Обратные матрицы

были найдены в примерах 4.2, 4.3 соответственно. Решение уравнения находим по формуле

Пример 4.8. Решить уравнение , где

Решение. Определитель матрицы равен нулю, следовательно, обратная матрица не существует. Поэтому нельзя использовать формулу . Будем искать элементы матрицы . Подставляя в уравнение, получаем

Находим произведение, а затем приравниваем соответствующие элементы матриц в левой и правой частях уравнения:

Здесь, учитывая пропорциональность уравнений, в системе оставлены только два уравнения из четырех. Выразим неизвестные и

Следовательно, решение матричного уравнения имеет вид


источники:

http://natalibrilenova.ru/matritsyi-i-sistemyi-linejnyih-uravnenij/

http://mathhelpplanet.com/static.php?p=matrichnye-uravneniya