Построить уравнение множественной регрессии пример

Уравнение множественной регрессии

Назначение сервиса . С помощью онлайн-калькулятора можно найти следующие показатели:

  • уравнение множественной регрессии, матрица парных коэффициентов корреляции, средние коэффициенты эластичности для линейной регрессии;
  • множественный коэффициент детерминации, доверительные интервалы для индивидуального и среднего значения результативного признака;

Кроме этого проводится проверка на автокорреляцию остатков и гетероскедастичность.

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Отбор факторов обычно осуществляется в два этапа:

  1. теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
  2. количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции). Научно обоснованное решение задач подобного вида также осуществляется с помощью дисперсионного анализа — однофакторного, если проверяется существенность влияния того или иного фактора на рассматриваемый признак, или многофакторного в случае изучения влияния на него комбинации факторов.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

  1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
  2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
  3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность — тесная линейная связь между факторами.

Пример . Постройте регрессионную модель с 2-мя объясняющими переменными (множественная регрессия). Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели.
Решение.
К исходной матрице X добавим единичный столбец, получив новую матрицу X

1514.5
11218
1612
1713
1814

Матрица Y

9
13
16
14
21

Транспонируем матрицу X, получаем X T :

11111
512678
14.518121314
Умножаем матрицы, X T X =
53871,5
38318563,5
71,5563,51043,25

В матрице, (X T X) число 5, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы X T и 1-го столбца матрицы X

Умножаем матрицы, X T Y =
73
563
1032,5

Находим обратную матрицу (X T X) -1

13.990.64-1.3
0.640.1-0.0988
-1.3-0.09880.14

Вектор оценок коэффициентов регрессии равен

(X T X) -1 X T Y = y(x) =
13,990,64-1,3
0,640,1-0,0988
-1,3-0,09880,14
*
73
563
1032,5
=
34,66
1,97
-2,45

Получили оценку уравнения регрессии: Y = 34.66 + 1.97X1-2.45X2
Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы о равенстве нулю коэффициент детерминации рассчитанного по данным генеральной совокупности. Для ее проверки используют F-критерий Фишера.
R 2 = 1 — s 2 e/∑(yi — yср) 2 = 1 — 33.18/77.2 = 0.57
F = R 2 /(1 — R 2 )*(n — m -1)/m = 0.57/(1 — 0.57)*(5-2-1)/2 = 1.33
Табличное значение при степенях свободы k1 = 2 и k2 = n-m-1 = 5 — 2 -1 = 2, Fkp(2;2) = 19
Поскольку фактическое значение F = 1.33 Пример №2 . Приведены данные за 15 лет по темпам прироста заработной платы Y (%), производительности труда X1 (%), а также по уровню инфляции X2 (%).

Год123456789101112131415
X13,52,86,34,53,11,57,66,74,22,74,53,55,02,32,8
X24,53,03,13,83,81,12,33,67,58,03,94,76,16,93,5
Y9,06,08,99,07,13,26,59,114,611,99,28,812,012,55,7

Решение. Подготовим данные для вставки из MS Excel (как транспонировать таблицу для сервиса см. Задание №2) .

Включаем в отчет: Проверка общего качества уравнения множественной регрессии (F-статистика. Критерий Фишера, Проверка на наличие автокорреляции),

После нажатия на кнопку Дале получаем готовое решение.
Уравнение регрессии (оценка уравнения регрессии):
Y = 0.2706 + 0.5257X1 + 1.4798X2
Скачать.

Качество построенного уравнения регрессии проверяется с помощью критерия Фишера (п. 6 отчета).

Пример №3 .
В таблице представлены данные о ВВП, объемах потребления и инвестициях некоторых стран.

ВВП16331,9716763,3517492,2218473,8319187,6420066,2521281,7822326,8623125,90
Потребление в текущих ценах771,92814,28735,60788,54853,62900,39999,551076,371117,51
Инвестиции в текущих ценах176,64173,15151,96171,62192,26198,71227,17259,07259,85

Решение:
Для проверки полученных расчетов используем инструменты Microsoft Excel «Анализ данных» (см. пример).

Пример №4 . На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:

  1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
  2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
  3. Определить стандартизованные коэффициенты регрессии (b-коэффициенты). Сделать вывод.
  4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
  5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.

Решение. Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор получается из выражения:
s = (X T X) -1 X T Y
Матрица X

13.910
13.914
13.715
1416
13.817
14.819
15.419
14.420
15.320
16.820
1621
16.422
16.822
17.225
1828
18.229
18.130
18.531
19.632
1936

Матрица Y
7
7
7
7
7
7
8
8
8
10
9
11
9
11
12
12
12
12
14
14

Матрица X T
11111111111111111111
3.93.93.743.84.85.44.45.36.866.46.87.288.28.18.59.69
1014151617191920202021222225282930313236

Умножаем матрицы, (X T X)

Умножаем матрицы, (X T Y)

Находим определитель det(X T X) T = 139940.08
Находим обратную матрицу (X T X) -1

Уравнение регрессии
Y = 1.8353 + 0.9459X 1 + 0.0856X 2
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка e = Y — X*s

0.62
0.28
0.38
0.01
0.11
-1
-0.57
0.29
-0.56
0.02
-0.31
1.23
-1.15
0.21
0.2
-0.07
-0.07
-0.53
0.34
0.57

se 2 = (Y — X*s) T (Y — X*s)
Несмещенная оценка дисперсии равна

Оценка среднеквадратичного отклонения равна

Найдем оценку ковариационной матрицы вектора k = σ*(X T X) -1

k(x) = 0.36
0,619-0,0262-0,0183
-0,02620,126-0,0338
-0,0183-0,03380,0102
=
0,222-0,00939-0,00654
-0,009390,0452-0,0121
-0,00654-0,01210,00366

Дисперсии параметров модели определяются соотношением S 2 i = Kii, т.е. это элементы, лежащие на главной диагонали
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции (от 0 до 1)

Связь между признаком Y факторами X сильная
Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора хi при неизменном уровне других факторов определяются по стандартной формуле линейного коэффициента корреляции — последовательно берутся пары yx1,yx2. , x1x2, x1x3.. и так далее и для каждой пары находится коэффициент корреляции

Коэффициент детерминации
R 2 = 0.97 2 = 0.95, т.е. в 95% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл: Tтабл (n-m-1;a) = (17;0.05) = 1.74
Поскольку Tнабл Fkp, то коэффициент детерминации статистически значим и уравнение регрессии статистически надежно

Построение парной регрессионной модели

Рекомендации к решению контрольной работы.

Статистические данные по экономике можно получить на странице Россия в цифрах.
После определения зависимой и объясняющих переменных можно воспользоваться сервисом Множественная регрессия. Регрессионную модель с 2-мя объясняющими переменными можно построить используя матричный метод нахождения параметров уравнения регрессии или метод Крамера для нахождения параметров уравнения регрессии.

Пример №3 . Исследуется зависимость размера дивидендов y акций группы компаний от доходности акций x1, дохода компании x2 и объема инвестиций в расширение и модернизацию производства x3. Исходные данные представлены выборкой объема n=50.

Тема I. Парная линейная регрессия
Постройте парные линейные регрессии — зависимости признака y от факторов x1, x2, x3 взятых по отдельности. Для каждой объясняющей переменной:

  1. Постройте диаграмму рассеяния (поле корреляции). При построении выберите тип диаграммы «Точечная» (без отрезков, соединяющих точки).
  2. Вычислите коэффициенты уравнения выборочной парной линейной регрессии (для вычисления коэффициентов регрессии воспользуйтесь встроенной функцией ЛИНЕЙН (функция находится в категории «Статистические») или надстройкой Пакет Анализа), коэффициент детерминации, коэффициент корреляции (функция КОРЕЛЛ), среднюю ошибку аппроксимации.
  3. Запишите полученное уравнение выборочной регрессии. Дайте интерпретацию найденным в предыдущем пункте значениям.
  4. Постройте на поле корреляции прямую линию выборочной регрессии по точкам .
  5. Постройте диаграмму остатков.
  6. Проверьте статистическую значимость коэффициентов регрессии по критерию Стьюдента (табличное значение определите с помощью функции СТЬЮДРАСПОБР) и всего уравнения в целом по критерию Фишера (табличное значение Fтабл определите с помощью функции FРАСПОБР).
  7. Постройте доверительные интервалы для коэффициентов регрессии. Дайте им интерпретацию.
  8. Постройте прогноз для значения фактора, на 50% превышающего его среднее значение.
  9. Постройте доверительный интервал прогноза. Дайте ему экономическую интерпретацию.
  10. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемого фактора на показатель.

Тема II. Множественная линейная регрессия
1. Постройте выборочную множественную линейную регрессию показателя на все указанные факторы. Запишите полученное уравнение, дайте ему экономическую интерпретацию.
2. Определите коэффициент детерминации, дайте ему интерпретацию. Вычислите среднюю абсолютную ошибку аппроксимации и дайте ей интерпретацию.
3. Проверьте статистическую значимость каждого из коэффициентов и всего уравнения в целом.
4. Постройте диаграмму остатков.
5. Постройте доверительные интервалы коэффициентов. Для статистически значимых коэффициентов дайте интерпретации доверительных интервалов.
6. Постройте точечный прогноз значения показателя y при значениях факторов, на 50% превышающих их средние значения.
7. Постройте доверительный интервал прогноза, дайте ему экономическую интерпретацию.
8. Постройте матрицу коэффициентов выборочной корреляции между показателем и факторами. Сделайте вывод о наличии проблемы мультиколлинеарности.
9. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемых факторов на показатель.

Множественная регрессия в EXCEL

history 26 января 2019 г.
    Группы статей
  • Статистический анализ

Рассмотрим использование MS EXCEL для прогнозирования переменной Y на основании нескольких переменных Х, т.е. множественную регрессию.

Перед прочтением этой статьи рекомендуется освежить в памяти простую линейную регрессию – прогнозирование на основе значений только одного фактора.

Disclaimer : Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей Множественного регрессионного анализа. Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения Регрессии – плохая идея.

Статья про Множественный регрессионный анализ получилась большая, поэтому ниже для удобства приведены ее разделы:

Прогнозирование единственной переменной Y на основании значений 2-х или более переменных Х называется множественной регрессией .

Множественная линейная регрессионная модель (Multiple Linear Regression Model) имеет вид Y=β 01 *X 12 *X 2 +…+β k *X k +ε. В этом случае переменная Y зависит от k поясняющих переменных Х, т.е. регрессоров . ε — случайная ошибка . Модель является линейной относительно неизвестных параметров β.

Оценка неизвестных параметров

В этой статье рассмотрим модель с 2-мя регрессорами. Сначала введем необходимые обозначения и понятия множественной регрессии.

Для описания зависимости Y от 2-х переменных линейная модель имеет вид:

Параметры этой модели β i нам неизвестны, но их можно оценить, используя случайную выборку (измеренные значения переменной Y от заданных Х). Оценки параметров модели (β 0 , β 1 , β 2 ) обычно вычисляются методом наименьших квадратов (МНК) , который минимизирует сумму квадратов ошибок прогнозирования (критерий минимизации в англоязычной литературе обозначают как SSE – Sum of Squared Errors).

Ошибка ε имеет случайную природу и имеет свою функцию распределения со средним значением =0 и дисперсией σ 2 .

Оценки b 1 и b 2 называются коэффициентами регрессии , они определяют влияние соответствующей переменной X, когда все остальные независимые переменные остаются неизменными .

Сдвиг (intercept) или постоянный член b 0 , определяет прогнозируемое значение Y, когда все поясняющие переменные Х равны 0 (часто сдвиг не имеет физического смысла в рамках модели и обусловлен лишь математическими вычислениями МНК ).

Вычислив оценки, полученные методом МНК, позволяют прогнозировать значения переменной Y:

Примечание : Для случая 2-х регрессоров, все спрогнозированные значения переменной Y будут лежать в плоскости (в плоскости регрессии ).

В качестве примера рассмотрим технологический процесс изготовления нити:

Инженер, на основе имеющегося опыта, предположил, что прочность нити Y зависит от концентрации исходного раствора1 ) и температуры реакции2 ), и соответствует модели линейной регрессии. Для нахождения комбинации переменных Х, при которых Y принимает максимальное значение, необходимо определить коэффициенты регрессии, сделав выборку.

В MS EXCEL коэффициенты множественной регрессии удобнее всего вычислить с помощью функции ЛИНЕЙН() . Это сделано в файле примера на листе Коэффициенты . Чтобы вычислить оценки:

  • выделите 3 ячейки в одной строке (т.к. мы рассматриваем случай 2-х регрессоров, то будут вычислены 2 коэффициента регрессии + величина сдвига = 3 значения, для вывода которых понадобится 3 ячейки). Пусть это будет диапазон С8:Е8 ;
  • в Строке формул введите = ЛИНЕЙН(D20:D50;B20:C50) . Предполагается, что в столбце В содержатся прогнозируемые значения Y (в нашей модели это Прочность нити), в столбцах С и D содержатся значения контролируемых параметров Х (Х1 – Концентрация в столбце С и Х2 – Температура в столбце D).
  • нажмите CTRL+SHIFT+ENTER (т.к. это формула массива ).

В левой ячейке будет рассчитано значение коэффициента регрессии b 2 для переменной Х2, в средней ячейке — значение коэффициента регрессии b 1 для переменной Х1, в правой – сдвиг . Обратите внимание, что порядок вывода коэффициентов регрессии обратный по отношению к расположению столбцов с данными соответствующих переменных Х (вычисленный коэффициент b 2 располагается левее по отношению к b 1 , тогда как значения переменной Х2 располагаются правее значений переменной Х1). Это может привести к путанице, поэтому лучше разместить коэффициенты над соответствующими столбцами с данными, как это сделано в строке 17 файла примера .

Примечание : В принципе без функции ЛИНЕЙН() можно обойтись, записав альтернативные формулы. Для этого в файле примера на листе Коэффициенты в столбцах I : K вычислены отклонения значений переменных Х 1i , Х 2i , Y i от их средних значений , т.е.:

Далее коэффициенты регрессии рассчитываются по следующим формулам (эти формулы справедливы только при прогнозировании по 2-м независимым переменным Х):

При прогнозировании по 3-м и более независимым переменным Х формулы для вычисления коэффициентов регрессии значительно усложняются, поэтому следует использовать матричный подход.

В файле примера на листе Матричная форма выполнены расчеты коэффициентов регрессии с помощью матричного подхода.

Расчет можно произвести как пошагово, так и одной формулой массива :

Коэффициенты регрессии (вектор b ) в этом случае вычисляются по формуле b =(X T X) -1 (X T Y) или в другом виде записи b =(X ’ X) -1 (X ’ Y)

Под Х подразумевается матрица, состоящая из столбцов значений переменной Х с дополнительным столбцом единиц, а под Y – вектор-столбец значений Y.

Диаграмма рассеяния

В случае простой линейной регрессии (один регрессор, т.е. одна переменная Х) для визуализации связи между прогнозируемым значением Y и переменной Х строят диаграмму рассеяния (двумерную).

В случае множественной линейной регрессии двумерную диаграмму рассеяния можно построить только для анализа влияния каждого отдельного регрессора на Y (при этом остальные Х не меняются), т.е. так называемую Матричную диаграмму рассеивания (См. файл примера лист Диагр расс (матричная) ).

К сожалению, такую диаграмму трудно интерпретировать.

Более того, матричная диаграмма может вводить в заблуждение (см. Introduction to linear regression analysis / D . C . Montgomery , E . A . Peck , G . G . Vining , раздел 3.2.5 ), демонстрируя наличие или отсутствие линейной взаимосвязи между отдельным регрессором X i и Y.

Для случая с 2-мя регрессорами можно предложить альтернативный вид матричной диаграммы рассеяния . В стандартной диаграмме рассеяния строятся проекции на координатные плоскости Х1;Х2, Y;X1 и Y;X2. Однако, если взглянуть на точки относительно плоскости регрессии , то картину, на мой взгляд, будет проще интерпретировать.

Сравним две матричные диаграммы рассеяния (см. файл примера на листе «Диагр расс (в плоск регрессии)» , построенные для одних и тех же наблюдений. Первая – стандартная,

вторая представляет собой вид сверху на плоскость регрессии и 2 вида вдоль плоскости.

На второй диаграмме становится очевидно, что разброс точек относительно плоскости регрессии совсем не большой и поэтому, скорее всего, построенная модель является полезной, а выбранные 2 переменные Х позволяют прогнозировать Y (конечно, для подтверждения этой гипотезы нужно провести процедуру F-теста ).

Несколько слов о построении альтернативной матричной диаграммы рассеяния:

  • Перед построением необходимо нормировать значения наблюдений (для каждой переменной вычесть среднее и разделить на стандартное отклонение ). В этом случае практически все точки на диаграммах будут находится в диапазоне +/-3 (по аналогии со стандартным нормальным распределением , 99% значений которого лежат в пределах +/-3 сигма). В этом случае, на диаграмме можно фиксировать мин/макс значений осей, чтобы EXCEL автоматически не модифицировал масштаб осей при изменении данных (это не всегда удобно);
  • Теперь координаты точек необходимо рассчитать в системе отсчета относительно плоскости регрессии (в которой плоскость Оху’ совпадает с плоскостью регрессии). Для этого необходимо найти матрицу вращения , например, через вращение приводящее к совмещению нормали к плоскости регрессии и вектора оси Z (0;0;1);
  • Новые координаты позволяют построить альтернативную матричную диаграмму. Кроме того, для удобства можно вращать систему координат вокруг новой оси Z, чтобы нагляднее представить себе распределение точек относительно плоскости регрессии (для этого использована Полоса прокрутки в ячейках Q31:S31 ).

Вычисление прогнозных значений Y (отдельное наблюдение и среднее значение) и построение доверительных интервалов

После того, как нами были найдены тем или иным способом коэффициенты регрессии можно приступать к вычислению прогнозных значений Y на основе заданных значений переменных Х.

Уравнение прогнозирования или уравнение регрессии в случае 2-х независимых переменных (регрессоров) записывается в виде:

Примечание: В MS EXCEL прогнозное значение Y для заданных Х 1 и Х 2 можно также предсказать с помощью функции ТЕНДЕНЦИЯ() . При этом 2-й аргумент будет ссылкой на столбцы, содержащие все значения переменных Х 1 и Х 2 , а 3-й аргумент функции должен быть ссылкой на диапазон ячеек, содержащий 2 значения Х (Х 1i и Х 2i ) для выбранного наблюдения i (см. файл примера, лист Коэффициенты, столбец G ). Функция ПРЕДСКАЗ() , использованная нами в простой регрессии, не работает в случае множественной регрессии .

Найдя прогнозное значение Y, мы, таким образом, вычислим его точечную оценку. Понятно, что фактическое значение Y, полученное при наблюдении, будет, скорее всего, отличаться от этой оценки. Чтобы ответить на вопрос о том, на сколько хорошо мы можем предсказывать новые значения Y, нам потребуется построить доверительный интервал этой оценки, т.е. диапазон в котором с определенной заданной вероятностью, скажем 95%, мы ожидаем новое значение Y.

Доверительные интервалы построим при фиксированном Х для:

  • нового наблюдения Y;
  • среднего значения Y (интервал будет уже, чем для отдельного нового наблюдения)

Как и в случае простой линейной регрессии , для построения доверительных интервалов нам потребуется сначала вычислить стандартную ошибку модели (standard error of the model) , которая приблизительно показывает насколько велика ошибка предсказания значений переменной Y на основании значений переменных Х.

Для вычисления стандартной ошибки оценивают дисперсию ошибки ε, т.е. сигма^2 (ее часто обозначают как MS Е либо MSres ) . Затем, вычислив из полученной оценки квадратный корень, получим Стандартную ошибку регрессии (часто обозначают как SEy или sey ).

где SSE – сумма квадратов значений ошибок модели ei=yi — ŷi ( Sum of Squared Errors ). MSE означает Mean Square of Errors (среднее квадратов ошибок, точнее остатков).

Величина n-p – это количество степеней свободы ( df degrees of freedom ), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y, р – количество оцениваемых параметров модели). В случае простой множественной регрессии с 2-мя регрессорами число степеней свободы равно n-3, т.к. при построении плоскости регрессии было оценено 3 параметра модели b (т.е. на это было «потрачено» 3 степени свободы ).

В MS EXCEL стандартную ошибку SEy можно вычислить формулы (см. файл примера, лист Статистика ):

Стандартная ошибка нового наблюдения Y при заданных значениях Х (вектор Хi) вычисляется по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

где α (альфа) – уровень значимости (обычно принимают равным 0,05=5%)

р – количество оцениваемых параметров модели (в нашем случае = 3)

n-p – число степеней свободы

– квантиль распределения Стьюдента (задает количество стандартных ошибок , в +/- диапазоне которых вероятность обнаружить новое наблюдение равно 1-альфа). Т.е. если квантиль равен 2, то диапазон шириной +/- 2 стандартных ошибок относительно прогнозного значения Y будет с вероятностью 95% содержать новое наблюдение Y (для каждого заданного Хi). В MS EXCEL вычисления квантиля производят по формуле = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) , подробнее см. в статье про распределение Стьюдента .

– прогнозное значение Yi вычисляемое по формуле Yi= b 0+ b 1* Х1i+ b 2* Х2i (точечная оценка).

Стандартная ошибка среднего значения Y при заданных значениях Х (вектор Хi) будет меньше, чем стандартная ошибка отдельного наблюдения. Вычисления производятся по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

Прогнозное значение Yi (точечная оценка) используется тоже, что и для отдельного наблюдения.

Стандартные ошибки и доверительные интервалы для коэффициентов регрессии

В разделе Оценка неизвестных параметров мы получили точечные оценки коэффициентов регрессии . Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со средним значением и дисперсией . Но, чтобы перейти от точечных оценок к интервальным , необходимо вычислить соответствующие стандартные ошибки (т.е. стандартные отклонения ) коэффициентов регрессии .

Стандартная ошибка коэффициента регрессии b j (обозначается se ( b j ) ) вычисляется на основании стандартной ошибки по следующей формуле:

где C jj является диагональным элементом матрицы (X ’ X) -1 . Для коэффициента сдвига b 0 индекс j=1 (верхний левый элемент), для b 1 индекс j=2, b 2 индекс j=3 (нижний правый элемент).

SEy – стандартная ошибка регрессии (см. выше ).

В MS EXCEL стандартные ошибки коэффициентов регрессии можно вычислить с помощью функции ЛИНЕЙН() :

Примечание : Подробнее о функции ЛИНЕЙН() см. статью Функция MS EXCEL ЛИНЕЙН() .

Применяя матричный подход стандартные ошибки можно вычислить и через обычные формулы (точнее через формулу массива , см. файл примера лист Статистика ):

= КОРЕНЬ(СУММКВРАЗН(E13:E43;F13:F43) /(n-p)) *КОРЕНЬ (ИНДЕКС (МОБР (МУМНОЖ(ТРАНСП(B13:D43);(B13:D43)));j;j))

При построении двухстороннего доверительного интервала для коэффициента регрессии его границы определяются следующим образом:

где t – это t-значение , которое можно вычислить с помощью формулы = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) для уровня значимости 0,05.

В результате получим, что найденный доверительный интервал с вероятностью 95% (1-0,05) накроет истинное значение коэффициента регрессии b j . Здесь мы считаем, что коэффициент регрессии b j имеет распределение Стьюдента с n-p степенями свободы (n – количество наблюдений, т.е. пар Х и Y).

Проверка гипотез

Когда мы строим модель, мы предполагаем, что между Y и переменными X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.

Единственный вариант, когда Y не зависит X, возможен, когда все коэффициенты регрессии β равны 0.

Чтобы убедиться, что вычисленная нами оценка коэффициентов регрессии не обусловлена лишь случайностью (они не случайно отличны от 0), используют проверку гипотез . В качестве нулевой гипотезы Н 0 принимают, что линейной связи нет, т.е. ВСЕ β=0. В качестве альтернативной гипотезы Н 1 принимают, что ХОТЯ БЫ ОДИН коэффициент β <>0.

Процедура проверки значимости множественной регрессии, приведенная ниже, является обобщением дисперсионного анализа , использованного нами в случае простой линейной регрессии (F-тест) .

Если нулевая гипотеза справедлива, то тестовая F -статистика имеет F-распределение со степенями свободы k и n k -1 , т.е. F k, n-k-1 :

Проверку значимости регрессии можно также осуществить через вычисление p -значения . В этом случае вычисляют вероятность того, что случайная величина F примет значение F 0 (это и есть p-значение ), затем сравнивают p-значение с заданным уровнем значимости α (альфа) . Если p-значение больше уровня значимости , то нулевую гипотезу нет оснований отклонить, и регрессия незначима.

В MS EXCEL значение F 0 можно вычислить на основании значений выборки по вышеуказанной формуле или с помощью функции ЛИНЕЙН() :

В MS EXCEL для проверки гипотезы через p -значение используйте формулу =F.РАСП.ПХ(F 0 ;k;n-k-1) файл примера лист Статистика , где показано эквивалентность обоих подходов проверки значимости регрессии).

В MS EXCEL критическое значение для заданного уровня значимости F 1-альфа, k, n-k-1 можно вычислить по формуле = F.ОБР(1- альфа;k;n-k-1) или = F.ОБР.ПХ(альфа;k; n-k-1) . Другими словами требуется вычислить верхний альфа- квантиль F -распределения с соответствующими степенями свободы .

Таким образом, при значении статистики F 0 > F 1-альфа, k, n-k-1 мы имеем основание для отклонения нулевой гипотезы.

В программах статистики результаты процедуры F -теста выводят с помощью стандартной таблицы дисперсионного анализа . В файле примера такая таблица приведена на листе Надстройка , которая построена на основе результатов, возвращаемых инструментом Регрессия надстройки Пакета анализа MS EXCEL .

Генерация данных для множественной регрессии с помощью заданного тренда

Иногда, бывает удобно сгенерировать значения наблюдений, имея заданный тренд.

Для решения этой задачи нам потребуется:

  • задать значения регрессоров в нужном диапазоне (значения переменных Х);
  • задать коэффициенты регрессии ( b );
  • задать тренд (вычислить значения Y= b0 +b1 * Х 1 + b2 * Х 2 );
  • задать величину разброса Y вокруг тренда (варианты: случайный разброс в заданных границах или заданная фигура, например, круг)

Все вычисления выполнены в файле примера, лист Тренд для случая 2-х регрессоров. Там же построены диаграммы рассеяния .

Коэффициент детерминации

Коэффициент детерминации R 2 показывает насколько полезна построенная нами линейная регрессионная модель .

По определению коэффициент детерминации R 2 равен:

R 2 = Изменчивость объясненная моделью ( SSR ) / Общая изменчивость ( SST ).

Этот показатель можно вычислить с помощью функции ЛИНЕЙН() :

При добавлении в модель новой объясняющей переменной Х, коэффициент детерминации будет всегда расти. Поэтому, рост коэффициента детерминации не может служить основанием для вывода о том, что новая модель (с дополнительным регрессором) лучше прежней.

Более подходящей статистикой, которая лишена указанного недостатка, является нормированный коэффициент детерминации (Adjusted R-squared):

где p – число независимых регрессоров (вычисления см. файл примера лист Статистика ).

Построение модели множественной регрессии

Исследуя модели простой и множественной регрессии, предполагалось, что зависимость между откликом Y и каждой из объясняющих переменных является линейной. Однако существуют и другие виды взаимосвязи. Одной из наиболее распространенных нелинейных взаимосвязей между двумя переменными является квадратичная зависимость. Для ее анализа предназначена модель квадратичной регрессии. [1]

Материал будет проиллюстрирован сквозным примером: прогнозирование продолжительности простоя художников, входящих в профсоюз. Представьте себе, что вы — директор телевизионной станции и стремитесь сократить производственные расходы. В частности, художники, входящие в профсоюз, получают почасовую оплату, даже когда они ничего не делают. Эти часы называют часами простоя. Считается, что общее количество часов простоя за неделю зависит от общего количества времени, проведенного в офисе, общего количества часов, проведенных на выезде, времени, затраченного на озвучивание, и общей продолжительности работы. Постройте модель множественной регрессии, позволяющую наиболее точно предсказать количество часов простоя. Она позволит выявить причины возникающих простоев и уменьшить их количество в будущем. Как построить наиболее подходящую модель? С чего начать?

Модель квадратичной регрессии:

где β0 — сдвиг, β1 — коэффициент линейного эффекта, β2 — коэффициент квадратичного эффекта, εi – случайная ошибка переменной Y в i-ом наблюдении.

Скачать заметку в формате Word или pdf, примеры в формате Excel2013

Модель квадратичной регрессии похожа на модель множественной регрессии с двумя переменными, за исключением того, что вторая объясняющая переменная является квадратом первой. Как и в модели множественной регрессии, выборочные коэффициенты регрессии b0,b1 и b2 представляют собой оценки параметров генеральной совокупности β0, β1 и β2. Таким образом, можно сформулировать следующую квадратичную модель с одной объясняющей переменной Х1 и зависимой переменной Y (уравнение квадратичной регрессии):

где коэффициент b0 является сдвигом, коэффициент b1 оценивает линейный эффект, а коэффициент b2 — квадратичный эффект.

Вычисление коэффициентов регрессии и предсказание отклика. Проиллюстрируем применение квадратичной модели на примере эксперимента, в котором изучается влияние зольной пыли на прочность бетона. Для этого была создана выборка, состоящая из 18 образцов 28-дневного бетона, прочность которого равна 4000 фунтов на дюйм. Объем зольной пыли колебался от 0 до 60%. Уровень значимости α = 0,05 (рис. 1).

Рис. 1. Прочность 28-дневного бетона и содержание зольной пыли в 18 образцах

Для того чтобы выбрать наиболее подходящую модель, описывающую зависимость прочности бетона от процента зольной пыли, построим диаграмму разброса (рис. 2). Как видим, при возрастании процента зольной пыли прочность бетона увеличивается, достигает максимума при содержании зольной пыли, равном 40%, а затем уменьшается. Итак, квадратичная модель точнее описывает исследуемую зависимость, чем линейная.

Рис. 2. Диаграмма разброса содержания зольной пыли (ось X) и прочности бетона (ось Y)

Значения трех коэффициентов регрессии (b0,b1 и b2) можно вычислить с помощью Пакета анализа Excel. Предварительно нужно создать еще одну колонку со значениями Х 2 (рис. 3).

Рис. 3. Результаты регрессионного анализа, полученные с помощью Пакета анализа Excel при решении задачи о прочности бетона

Уравнение квадратичной регрессии имеет следующий вид:

где — предсказанная прочность i-го образца, Х1i — содержание зольной пыли в i-ом образце.

Для того чтобы продемонстрировать соответствие построенной модели исходным данным, на рис. 4 приведен график квадратичной зависимости прочности бетона от содержания зольной пыли. Для построения графика нужно вернуться к рис. 2, кликнуть правой кнопкой мыши на точках диаграммы, и выбрать Добавить линию тренда. В открывшемся окне выбрать параметр линии тренда Полиномиальная, степень 2, а также кликнуть Показывать уравнение на диаграмме.

Рис. 4. График квадратичной зависимости на диаграмме разброса содержания зольной пыли (ось X) и прочности бетона (ось Y)

Коэффициент b0, представляющий собой предсказанную среднюю прочность бетона при нулевом содержании зольной пыли, представляет собой сдвиг отклика и равен 4 486,361. Чтобы объяснить смысл коэффициентов b1 и b2, следует обратить внимание на рис. 4. Как видим, при увеличении содержания зольной пыли прочность бетона сначала увеличивается, а затем уменьшается. Этот эффект можно продемонстрировать, предсказав среднюю прочность бетона при содержании зольной пыли, равном 20, 40 и 60%. Используя квадратичную модель:

получаем следующие результаты (рис. 5):

Рис. 5. Предсказанная прочность бетона на основе квадратичной модели

Проверка значимости квадратичной модели. Убедившись, что квадратичная модель адекватна исходным данным, можно проверить, существует ли статистически значимая зависимость между прочностью бетона Y и содержанием зольной пыли X. Нулевая и альтернативная гипотезы формулируются следующим образом: Н0: β1 = β2 = 0 (между откликом Y и объясняющей переменной Х1 нет зависимости); Н1: β1 ≠ 0 и/или β2 ≠ 0 (между откликом Y и объясняющей переменной Х1 есть зависимость). Нулевую гипотезу можно проверить с помощью F-критерия:

(см. рис. 3, ячейки D31, D32, Е31)

Если уровень значимости α = 0,05, критическое значение F-распределения, имеющего две и 15 степеней свободы, =F.ОБР(0,95;2;15) = 3,682 (рис. 6). Поскольку F = 13,84 > FU = 3,68 и р =1-F.РАСП(E31;2;15;ИСТИНА) = 0,00039 2 = 0,6485. Эта величина означает, что 64,85% вариации прочности бетона можно объяснить квадратичной зависимостью между прочностью бетона и содержанием зольной пыли.

Преобразование данных в регрессионных моделях

Перейдем к изучению регрессионных моделей, в которых независимая переменная X, зависимая переменная Y или обе переменные подвергаются преобразованиям, чтобы преодолеть ограничения, наложенные на модель, либо для ее линеаризации. К наиболее распространенным преобразованиям относятся извлечение квадратного корня или логарифмирование.

Извлечение квадратного корня. Для преодоления ограничений, связанных со свойством гомоскедастичности, [2] а также для превращения нелинейной модели в линейную часто применяется извлечение квадратного корня. Если из объясняющей переменной извлекается квадратный корень, регрессионная модель принимает следующий вид:

Пример 1. Извлечение квадратного корня из переменной X (рис. 8а) превращает нелинейную зависимость (рис. 8б) в линейную (рис. 8в).

Рис. 8. Диаграммы разброса: (б) для исходных данных; (в) для квадратного корня из переменной X

Логарифмическое преобразование. Когда нарушается условие гомоскедастичности, кроме извлечения квадратного корня, часто применяется логарифмическое преобразование. Оно также позволяет превратить нелинейную модель в линейную. Чтобы не углубляться в сложные формулы, проиллюстрируем применение логарифмического преобразования на примере.

Пример 2. Диаграмма разброса (рис. 9а), демонстрирующая экспоненциальный рост исходных данных, может принять вид линейной путем преобразования зависимой и объясняющей переменных (рис. 9б). Удобнее всего это сделать простым выбором Логарифмической шкалы по обеим осям (рис. 9в). Иногда достаточно изменить только одну ось.

Рис. 9. Диаграммы разброса: (а) для исходных данных; (б) после логарифмического преобразования переменных X и Y; (в) показано, что преобразованы не исходные данные, а вид шкал на диаграмме

Коллинеарность

Применение модели множественной регрессии сопряжено с весьма важной проблемой — возможной коллинеарностью объясняющих переменных. Коллинеарными называют объясняющие переменные, значительно коррелирующие друг с другом. В этих ситуациях переменные не добавляют новой информации, поэтому их влияние на отклик трудно оценить. Это может привести к явной неустойчивости регрессионных коэффициентов, соответствующих коллинеарным переменным. Оценить коллинеарность можно, вычислив коэффициент инфляции (variance inflationary factor – VIF) для каждой объясняющей переменной. Коэффициент инфляции:

где Rj 2 — коэффициент множественной смешанной корреляции объясняющей переменной Xj со всеми другими объясняющими переменными.

Если модель содержит только две объясняющие переменные, величина R1 2 представляет собой коэффициент смешанной корреляции между переменными X1 и Х2. Он может совпадать с величиной R2 2 — коэффициентом смешанной корреляции между переменными Х2 и Х1. Если в модели содержатся три объясняющие переменные, то величина Rj 2 , где j = 1, 2, 3, представляет собой коэффициент множественной смешанной корреляции между переменной Xj и двумя другими объясняющими переменными.

Если объясняющие переменные не коррелируют друг с другом, коэффициент VIFj равен 1. Если объясняющие переменные сильно коррелируют друг с другом, VIFj может быть больше 10.

Модель множественной регрессии, в которой существуют большие коэффициенты инфляции, следует применять с крайней осторожностью. Эти модели позволяют предсказывать значения зависимой переменной только в том случае, если значения независимых переменных, подставляемые в модель, хорошо согласуются с данными, содержащимися в исходном наборе данных. Эти модели нельзя применять для экстраполяции отклика на значения независимых переменных, не содержащихся в исходной выборке. Кроме того, коэффициенты таких моделей не поддаются интерпретации, поскольку независимые переменные содержат перекрывающуюся информацию, а их индивидуальный вклад невозможно вычислить точно. Для решения этой проблемы следует исключить из регрессионной модели переменную, имеющую наибольший коэффициент инфляции. Довольно часто после этой операции сокращенная модель уже не содержит коллинеарных переменных.

Если вернуться к задаче о продажах батончиков OmniPower, рассмотренной ранее, окажется, что коэффициент корреляции между двумя объясняющими переменными (ценой и затратами на рекламу) равен –0,0968. Коэффициент инфляции этих переменных:

Таким образом, объясняющие переменные в задаче о продажах батончиков OmniPower не коллинеарны.

Построение модели множественной регрессии

Остановимся подробнее на процессе построения модели, содержащей несколько объясняющих переменных. Для начала вспомним о задаче, в которой для предсказания объема простоя на телевизионной станции были учтены четыре объясняющие переменные (продолжительность работы в офисе, количество часов, проведенных на выезде, время, затраченное на озвучивание, и общее количество рабочих часов в неделе). Попробуем предсказать количество часов простоя, используя данные, приведенные на рис. 10.

Рис. 10. Предсказание продолжительности простоя по количеству часов, проведенных в офисе, количеству часов, проведенных на выезде, количеству часов, затраченных на озвучивание, и общему количеству рабочих часов в неделе.

Прежде чем приступать к прогнозированию, необходимо учесть, что модель должна быть экономной. Это значит, что наша цель — разработать регрессионную модель, включающую в себя как можно меньше объясняющих переменных, позволяющих адекватно интерпретировать интересующий нас отклик. Регрессионная модель с минимальным количеством переменных намного проще других и меньше страдает от коллинеарности переменных. Кроме того, необходимо понимать, что модель с большим количеством объясняющих переменных порождает большие сложности при регрессионном анализе. Во-первых, оценка всех возможных регрессионных моделей становится крайне сложной вычислительной задачей. Во-вторых, даже если конкурентные модели удалось оценить, может оказаться, что единственной оптимальной модели не существует, а есть несколько одинаково хороших.

Начнем анализ простоев на телевизионной станции с оценки коллинеарности других объясняющих переменных, вычислив коэффициент инфляции (4) для каждой из них (рис. 11). Для этого необходимо исключить колонку Простой, а затем провести регрессионный анализ последовательно назначая в качестве зависимой переменной Присутствие, Отсутствие, Озвучивание и Всего, а в качестве объясняющих – три оставшиеся (подробнее см. Excel-файл).

Рис. 11. Анализ коллинеарности объясняющих переменных

Обратите внимание на то, что коэффициенты VIF относительно малы и колеблются от 1,23 для часов, проведенных на выезде, до 2,0 для общего количества рабочих часов. Таким образом, поскольку коэффициенты VIF не больше пяти, мы можем утверждать, что объясняющие переменные не коллинеарны.

Пошаговый подход к построению регрессионной модели. Продолжим анализ задачи о простоях и попробуем определить такой набор объясняющих переменных, который позволил бы построить адекватную и точную модель без необходимости учитывать все переменные. Одним из основных способов построения таких моделей является пошаговая регрессия, с помощью которой можно определить наилучшую регрессионную модель без перебора всех регрессионных моделей. После определения наилучшей модели для проверки проводится анализ остатков.

Напомним, что для оценки вклада переменных в модель множественной регрессии применяется F-критерий. В процессе шаговой регрессии F-критерий применяется к модели с любым количеством переменных. Важным свойством пошаговой процедуры является то, что объясняющие переменные, включенные в модель на предыдущих этапах, могут впоследствии исключаться из рассмотрения. Это значит, что на каждом этапе объясняющие переменные как включаются, так и исключаются из модели. Пошаговая регрессия останавливается, когда ни добавление, ни удаление объясняющих переменных не повышают точность модели.

При включении объясняющих переменных в модель и удалении их из нее уровень значимости α принимается равным 0,05. Начнем с попарного анализа, в котором зависимой переменной является Простой, а объясняющей переменной (единственной) последовательно: Присутствие, Отсутствие, Озвучивание и Всего (рис. 12). Видно, что наиболее сильно коррелирует с откликом Присутствие. Поскольку р-значение равно 0,001 и меньше 0,05, эта переменная включается в регрессионную модель.

Рис. 12. Анализ влияния первой объясняющей переменной на отклик

На следующем этапе в модель включается вторая объясняющая переменная. Она должна иметь наибольшее влияние на точность модели при условии, что первая объясняющая переменная (продолжительность работы в офисе) уже учтена. В данной задаче такой переменной оказалось количество часов, проведенных на выезде (рис. 13). Поскольку р-значение, соответствующее этой переменной, равно 0,027 и не больше 0,05, количество часов, проведенных на выезде (отсутствие), включается в модель.

Рис. 13. Анализ влияния второй объясняющей переменной при условии, что первая объясняющая переменная (Присутствие) уже учтена

Теперь необходимо определить, насколько велик вклад продолжительности работы в офисе и не следует ли исключить его из модели. Поскольку р-значение для этой переменной равно 0,0001, ее следует оставить в модели (см. Excel-файл).

На следующем этапе необходимо решить, стоит ли включать в модель третью переменную (рис. 14). Поскольку ни одна из оставшихся переменных не удовлетворяет F-критерию с 5%-ным уровнем значимости, в результате получаем регрессионную модель с двумя объясняющими переменными: продолжительностью работы в офисе (присутствие) и количеством часов, проведенных на выезде (отсутствие).

Рис. 14. Анализ влияния третьей объясняющей переменной при условии, что две объясняющие переменные (Присутствие и Отсутствие) уже учтены

Процедура пошаговой регрессии была предложена около тридцати лет назад, когда стоимость компьютерного времени была очень высока. В этих условиях она позволяла сократить объем перебора объясняющих переменных и широко использовалась. В настоящее время появились новые очень эффективные регрессионные модели. Так был разработан более общий подход к построению альтернативных регрессионных моделей, получивший название метода выбора наилучшего подмножества. В последнее время появилась новая методика исследования — интеллектуальный анализ данных — способ анализа информации в огромных базах данных для поиска статистически значимых зависимостей среди огромного количества объясняющих переменных. В этих условиях метод выбора наилучшего подмножества становится непрактичным.

С помощью метода выбора наилучшего подмножества либо оценивают всевозможные регрессионные модели для заданного набора данных, либо определяют наилучшие подмножества моделей для заданного количества независимых переменных. На рис. 15 показаны результаты применения метода выбора наилучшего подмножества для решения задачи о простоях на телевизионной станции. Обратите внимание на то, что максимальным значением скорректированного коэффициента r 2 является число 0,551. Оно достигается для модели, в которой учитываются четыре объясняющие переменные и эффект взаимодействия всех пяти оцениваемых параметров.

Рис. 15. Результаты применения метода выбора наилучшего подмножества для решения задачи о простоях на телевизионной станции; чтобы создать эту таблицу нужно последовательно провести регрессионный анализ для каждого набора объясняющих переменных (всего 15 раз, подробнее см. файл Данные для построения рисунка 15); обратите внимание на чрезвычайно маленькое значение коэффициента r 2 и учтите, что скорректированный коэффициент r 2 может быть отрицательным.

В качестве второго критерия часто используется статистика, предложенная Мэллоусом. Статистика Ср оценивает разность между эмпирической и истинной регрессионной моделями:

где n – количество наблюдений (в нашем случае 26, см. рис. 10), k — количество независимых переменных, включенных в регрессионную модель, Т — общее количество параметров (включая эффекты взаимодействия), включенных в полную модель регрессии (T = kmax + 1), — коэффициент множественной смешанной корреляции в регрессионной модели, содержащей k независимых переменных, — коэффициент множественной смешанной корреляции в полной регрессионной модели, содержащей все Т оцениваемых параметра.

Вычислим статистику Ср для модели, содержащей продолжительность работы в офисе и количество часов, проведенных на выезде, используя вышеприведенную формулу:

n = 26, k = 2, T = 4 + 1 = 5, = 0,490, = 0,623.

Если отклонения регрессионной модели, содержащей k независимых переменных, от истинной модели являются случайными, среднее значение статистики Ср равно k + 1 , т.е. количеству параметров. Таким образом, при оценке многих альтернативных регрессионных моделей основная цель — найти модели, для которых величина Ср близка k + 1 или меньше этого числа. Как показано на рис. 15, этому критерию соответствует лишь одна модель, содержащая все четыре независимые переменные. Следовательно, необходимо выбрать именно эту модель. Довольно часто статистика Ср выделяет не одну, как в данном случае, а несколько моделей, которые подлежат более глубокому анализу на основе критериев экономии, простоты и соответствия исходным предположениям (по результатам анализа остатков). Обратите также внимание на то, что значение статистики С р для модели, выбранной по результатам пошагового анализа, равно 8,4. Эта величина намного превышает предполагаемый уровень k + 1 =3.

Определив объясняющие переменные, которые следует включить в модель, необходимо проверить ее точность с помощью анализа остатков (рис. 16). Обратите внимание на то, что все графики не демонстрируют никаких явных зависимостей.

Рис. 16. Графики остатков, построенные с помощью Пакета анализа Excel при решении задачи о простоях

Этапы построения регрессионной модели (рис. 17):

  1. Определить набор независимых переменных для включения в регрессионную модель.
  2. Построить полную регрессионную модель, учитывающую все независимые переменные, и вычислить коэффициент VIF для каждой из них.
  3. Определить, все ли независимые переменные имеют коэффициент VIF больше пяти.
  4. Возможны три варианта: (а) для всех независимых переменных коэффициент VIF больше пяти. Перейти к п. 5; (б) для одной независимой переменной коэффициент VIF больше пяти. Исключить ее из модели и, перейти к п. 5; (в) для нескольких независимых переменных коэффициент VIF больше пяти. Исключить из модели независимую переменную, имеющую наибольший коэффициент VIF, и перейти к п. 2.
  5. Применить метод выбора наилучшего подмножества к оставшимся переменным и определить наилучшую модель (по величине Ср).
  6. Перечислить все модели, у которых Ср ≤ k + 1.
  7. Выбрать среди моделей, обнаруженных в п. 6, наилучшую.
  8. Выполнить полный анализ выбранной модели, включая анализ остатков.
  9. В зависимости от результатов анализа остатков добавить квадратичные члены, преобразовать данные и выполнить повторный анализ.
  10. Применить полученную модель, чтобы предсказать значения зависимой переменной.

Рис. 17. Схема построения модели

Ловушки и этические проблемы, связанные со множественной регрессией

Построение моделей является синтезом искусства и науки. Разные люди придерживаются разных точек зрения на оптимальность регрессионных моделей. В любом случае рекомендуем придерживаться схемы на рис. 17. Однако применение этой схемы сопряжено с некоторыми ловушками:

  • Необходимо понимать, что при интерпретации коэффициента регрессии, соответствующего конкретной независимой переменной, остальные переменные считаются константами.
  • Следует проводить анализ остатков для каждой независимой переменной.
  • Нужно оценивать эффект взаимодействия и проверять, чтобы наклоны отклика по каждой из объясняющей переменной были одинаковыми.
  • Необходимо вычислять коэффициенты VIF для каждой независимой переменной, включаемой в модель.
  • Следует проверять несколько альтернативных моделей, используя метод выбора наилучшего подмножества.

Этические вопросы возникают, когда модель множественной регрессии используется для предсказания величин, находящихся под управлением пользователя. Ключевым моментом в этом случае являются намерения исследователя. Возможны варианты, когда статистик преднамеренно не исключает из модели множественной регрессии коллинеарные переменные и неправомерно применяет метод наименьших квадратов даже тогда, когда не выполняются необходимые условия.

Резюме. В заметке показано, как директор телевизионной станции может применять множественный линейный анализ для сокращения продолжительности простоев. Рассмотрены различные модели множественной регрессии, включая квадратичные модели, модели с фиктивными переменными, модели с эффектами взаимодействия. Изучены способы преобразования переменных, исследованы коллинеарные переменные и описан процесс построения регрессионной модели.

Рис. 18. Структурная схема заметки

[1] Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 937–981

[2] Гомоскедастичность – равенство дисперсий случайных отклонений для различных Х, то есть, распределение предсказанного отклика Y вокруг среднего значения одинаково для всех Х.


источники:

http://excel2.ru/articles/mnozhestvennaya-regressiya-v-ms-excel

http://baguzin.ru/wp/6198/