Поверхность заданная уравнением представляет собой онлайн

Построение поверхности 3D

Результат

Примеры поверхностей

  • Эллиптический параболоид
  • Двухсторонний гиперболоид
  • Мнимый эллипсоид
  • Две параллельные плоскости
  • Тригонометрические функции

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Касательная плоскость и нормаль к поверхности

Касательной плоскостью к поверхности σ в её точке М0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М0.
Уравнение касательной плоскости к поверхности, заданной уравнением z = f(x,y) , в точке M0(x0,y0,z0) имеет вид:

Пример №1 . Поверхность задана уравнением x 3 +5y . Найти уравнение касательной плоскости к поверхности в точке M0(0;1).
Решение. Запишем уравнения касательной в общем виде: z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 0 , y0 = 1 , тогда z0 = 5
Найдем частные производные функции z = x^3+5*y :
f’x(x,y) = (x 3 +5•y)’x = 3•x 2
f’x(x,y) = (x 3 +5•y)’y = 5
В точке М0(0,1) значения частных производных:
f’x(0;1) = 0
f’y(0;1) = 5
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 5 = 0(x — 0) + 5(y — 1) или -5•y+z = 0

Пример №2 . Поверхность задана неявным образом y 2 -1/2*x 3 -8z. Найти уравнение касательной плоскости к поверхности в точке M0(1;0;1).
Решение. Находим частные производные функции. Поскольку функция задана в неявном виде, то производные ищем по формуле:

Для нашей функции:

Тогда:

В точке М0(1,0,1) значения частных производных:
f’x(1;0;1) = -3 /16
f’y(1;0;1) = 0
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 1 = -3 /16(x — 1) + 0(y — 0) или 3 /16•x+z- 19 /16 = 0

Пример . Поверхность σ задана уравнением z= y/x + xy – 5x 3 . Найти уравнение касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.
Найдем частные производные функции z= f(x, y) = y/x + xy – 5x 3 :
fx’(x, y) = (y/x + xy – 5x 3 )’x = – y/x 2 + y – 15x 2 ;
fy’ (x, y) = (y/x + xy – 5x 3 )’y = 1/x + x.
Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

Пример №1 . Дана функция z=f(x,y) и две точки А(х0, y0) и В(х1,y1). Требуется: 1) вычислить значение z1 функции в точке В; 2) вычислить приближенное значение z1 функции в точке В исходя из значения z0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) составить уравнение касательной плоскости к поверхности z = f(x,y) в точке C(x0,y0,z0).
Решение.
Запишем уравнения касательной в общем виде:
z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 1, y0 = 2, тогда z0 = 25
Найдем частные производные функции z = f(x,y)x^2+3*x*y*+y^2:
f’x(x,y) = (x 2 +3•x•y•+y 2 )’x = 2•x+3•y 3
f’x(x,y) = (x 2 +3•x•y•+y 2 )’y = 9•x•y 2
В точке М0(1,2) значения частных производных:
f’x(1;2) = 26
f’y(1;2) = 36
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0:
z — 25 = 26(x — 1) + 36(y — 2)
или
-26•x-36•y+z+73 = 0

Пример №2 . Написать уравнения касательной плоскости и нормали к эллиптическому параболоиду z = 2x 2 + y 2 в точке (1;-1;3).
Скачать решение

Поверхности второго порядка. Поверхности вращения.

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0)

этой поверхности окружность, проходящая через эту точку в плоскости z=z0 с центром в (0,0,z0) и радиусом

, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).

Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением

F(x 2 +y 2 ,z)=0, то S — поверхность вращения вокруг оси OZ.

Эллипсоид:

Мнимый эллипсоид.

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

Свойства эллипсоида.

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что

2. Эллипсоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно координатных осей,
  • плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается

Однополостной гиперболоид.

Свойства однополостного гиперболоида.

1. Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что

2. Однополостной гиперболоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается

эллипс, а плоскостями, ортогональными осям Ox и Oyгипербола.

Двуполостной гиперболоид.

Свойства двуполостного гиперболоида.

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует,

что и неограничен сверху.

2. Двуполостный гиперболоид обладает

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при

получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям

Ox и Oy, – гипербола.

Эллиптический параболоид.

В случае, если a=b≠0, перечисленные выше (эллипсоид, однополостной гиперболоид, двуполостной

гиперболоид, эллиптический параболоид) поверхности являются поверхностями вращения.

Эллиптический параболоид.

Свойства эллиптического параболоида.

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует,

что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает:

  • осевой симметрией относительно оси Oz,
  • плоскостной симметрией относительно координатных осей Oxz и Oyz.

3. В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а

плоскостями, ортогональными осям Ox и Oy – парабола.

Уравнение эллиптического параболоида имеет вид:

Если a=b, то эллиптический параболоид представляет собой поверхность вращения, образованную

вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через

вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью z=z0>0 является эллипсом.

Пересечение эллиптического параболоида с плоскостью x=x0 или y=y0 является параболой.


источники:

http://math.semestr.ru/math/tangent-plane.php

http://www.calc.ru/Poverkhnosti-Vtorogo-Poryadka-Poverkhnosti-Vrashcheniya.html