Правило перестановки слагаемых в уравнении

Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.

Правило переноса слагаемого.

При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения. Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств.

Примеры переноса слагаемого:

Сначала переносим 5x из левой части уравнения в правую:

Далее переносим (−6) из правой части в левую:

Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+». При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение.

Переносим 1-е слагаемое в правую сторону уравнения. Получаем:

Обратите внимание, что в нашем примере слагаемое — это выражение (−3x 2 (2+7x)). Поэтому нельзя отдельно переносить (−3x 2 ) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3x 2 2) и (7x). Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑2) и (−3×27x). Эти 2 слагаемых можно переносить отдельно друг от друга.

Таким же образом преобразовывают неравенства:

Собираем каждое число с одной стороны. Получаем:

2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону. Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».

Это правило зачастую используется для решения линейных уравнений. Для решения систем линейных уравнений используются другие методы.

Тождественные преобразования выражений, их виды

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Если мы заменим выражение x + 3 − 2 на тождественно равное ему выражение x + 1 , то мы проведем при этом тождественное преобразование выражения x + 3 − 2 .

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Обращаем ваше внимание на форму записи выражений при проведении тождественных преобразований. Обычно мы записываем исходное и полученное в ходе преобразования выражения в виде равенства. Так, запись x + 1 + 2 = x + 3 означает, что выражение x + 1 + 2 было приведено к виду x + 3 .

Последовательное выполнение действий приводит нас к цепочке равенств, которая представляет собой несколько расположенных подряд тождественных преобразований. Так, запись x + 1 + 2 = x + 3 = 3 + x мы понимаем как последовательное проведение двух преобразований: сначала выражение x + 1 + 2 привели к виду x + 3 , а его – к виду 3 + x .

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

При выполнении перехода от выражения a + ( − b ) к выражению a − b область допустимых значений переменных a и b остается прежней.

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и — 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + ( — 12 ) · a слагаемые можно переставить, например, так ( — 12 ) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5 тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Произведение 3 · 5 · 7 перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5 .

Перестановка множителей в произведении x + 1 · x 2 — x + 1 x даст x 2 — x + 1 x · x + 1

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Проведем действия со скобками в выражении вида 3 + x − 1 x для того, чтобы получить тождественно верное выражение 3 + x − 1 x .

Выражение 3 · x — 1 + — 1 + x 1 — x можно преобразовать в тождественно равное выражение без скобок 3 · x — 3 — 1 + x 1 — x .

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Возьмем выражение 5 + 7 + 1 . Если мы сгруппируем первое слагаемое с третьим, то получим ( 5 + 1 ) + 7 .

Группировка множителей проводится аналогично группировке слагаемых.

В произведении 2 · 3 · 4 · 5 можно сгруппировать первый множитель с третьим, а второй – с четвертым, при этом придем к выражению ( 2 · 4 ) · ( 3 · 5 ) . А если бы мы сгруппировали первый, второй и четвертый множители, то получили бы выражение ( 2 · 3 · 5 ) · 4 .

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Замена разностей суммами стала возможна благодаря нашему знакомству с противоположными числами. Теперь вычитание из числа a числа b можно рассматривать как прибавление к числу a числа − b . Равенство a − b = a + ( − b ) можно считать справедливым и на его основе проводить замену разностей суммами.

Возьмем выражение 4 + 3 − 2 , в котором разность чисел 3 − 2 мы можем записать как сумму 3 + ( − 2 ) . Получим 4 + 3 + ( − 2 ) .

Все разности в выражении 5 + 2 · x − x 2 − 3 · x 3 − 0 , 2 можно заменить суммами как 5 + 2 · x + ( − x 2 ) + ( − 3 · x 3 ) + ( − 0 , 2 ) .

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Замена деления на умножение на число, обратное делителю, становится возможным благодаря понятию взаимно обратных чисел. Это преобразование можно записать равенством a : b = a · ( b − 1 ) .

Это правило было положено в основу правила деления обыкновенных дробей.

Частное 1 2 : 3 5 можно заменить произведением вида 1 2 · 5 3 .

Точно также по аналогии деление может быть заменено умножением.

В случае с выражением 1 + 5 : x : ( x + 3 ) заменить деление на x можно на умножение на 1 x . Деление на x + 3 мы можем заменить умножением на 1 x + 3 . Преобразование позволяет нам получить выражение, тождественное исходному: 1 + 5 · 1 x · 1 x + 3 .

Замена умножения делением поводится по схеме a · b = a : ( b − 1 ) .

В выражении 5 · x x 2 + 1 — 3 умножение можно заменить делением как 5 : x 2 + 1 x — 3 .

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Преобразуем выражение 3 · 2 3 — 1 · a + 4 · x 2 + 5 · x ,выполнив все возможные действия с числами.

Решение

Первым делом обратим внимание на степень 2 3 и корень 4 и вычислим их значения: 2 3 = 8 и 4 = 2 2 = 2 .

Подставим полученные значения в исходное выражение и получим: 3 · ( 8 — 1 ) · a + 2 · ( x 2 + 5 · x ) .

Теперь проведем действия в скобках: 8 − 1 = 7 . И перейдем к выражению 3 · 7 · a + 2 · ( x 2 + 5 · x ) .

Нам осталось выполнить умножение чисел 3 и 7 . Получаем: 21 · a + 2 · ( x 2 + 5 · x ) .

Ответ: 3 · 2 3 — 1 · a + 4 · x 2 + 5 · x = 21 · a + 2 · ( x 2 + 5 · x )

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Возьмем выражение 3 + 2 · ( 6 : 3 ) · x · ( y 3 · 4 ) − 2 + 11 .

Решение

Первым делом проведем замену частного в скобках 6 : 3 на его значение 2 . Получим: 3 + 2 · 2 · x · ( y 3 · 4 ) − 2 + 11 .

Раскроем скобки: 3 + 2 · 2 · x · ( y 3 · 4 ) − 2 + 11 = 3 + 2 · 2 · x · y 3 · 4 − 2 + 11 .

Сгруппируем числовые множители в произведении, а также слагаемые, являющиеся числами: ( 3 − 2 + 11 ) + ( 2 · 2 · 4 ) · x · y 3 .

Выполним действия в скобках: ( 3 − 2 + 11 ) + ( 2 · 2 · 4 ) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · ( 6 : 3 ) · x · ( y 3 · 4 ) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · ( 7 + 3 ) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Рассмотрим выражение 1 + 4 · x − 2 · x . Мы можем вынести буквенную часть x за скобки и получить выражение 1 + x · ( 4 − 2 ) . Проведем вычисление значения выражения в скобках и получим сумму вида 1 + x · 2 .

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Рассмотрим выражение 3 + x . Здесь число 3 может быть заменено суммой 1 + 2 . Так мы получим выражение ( 1 + 2 ) + x , тождественно равное исходному.

Рассмотрим выражение 1 + a 5 , в котором степень a 5 мы можем заменить тождественно равным ей произведением, например, вида a · a 4 . Это нам даст выражение 1 + a · a 4 .

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Рассмотрим преобразование суммы 4 · x 3 + 2 · x 2 . Здесь слагаемое 4 · x 3 мы можем представить как произведение 2 · x 2 · 2 · x . В результате исходное выражение принимает вид 2 · x 2 · 2 · x + 2 · x 2 . Теперь мы можем выделить общий множитель 2 · x 2 и вынести его за скобки: 2 · x 2 · ( 2 · x + 1 ) .

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Рассмотрим выражение x 2 + 2 · x . Мы можем прибавить или отнять от него единицу, что позволит нам в последующем провести еще одно тождественное преобразование — выделить квадрат двучлена: x 2 + 2 · x = x 2 + 2 · x + 1 − 1 = ( x + 1 ) 2 − 1 .

Урок математики в 1 классе «Перестановка слагаемых»

Татьяна Бакун
Урок математики в 1 классе «Перестановка слагаемых»

Тема: Перестановка слагаемых.

Цель: посредством наблюдения вывести правило о том, что от перестановки слагаемых сумма не изменяется; способствовать развитию внимания, наблюдательности; закреплению умения прибавлять и вычитать числа 1, 2, 3, 4.

Планируемые результаты (предметные) : знать правило о том, что от перестановки слагаемых сумма не изменяется; уметь прибавлять и вычитать числа 1, 2, 3, 4.

Универсальные учебные действия (метапредметные) :

Регулятивные: уметь осуществлять контроль в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона.

Коммуникативные: уметь участвовать в диалоге на уроке и в жизненных ситуациях; отвечать на вопросы учителя, товарищей по классу; соблюдать простейшие нормы речевого этикета: здороваться, прощаться, благодарить; слушать и понимать речь других; осуществлять работу в паре.

Познавательные: уметь делать предварительный отбор источников информации: ориентироваться в учебнике (на развороте, в оглавлении, в словаре); самостоятельно предполагать, какая информация нужна для решения предметной учебной задачи, состоящей из 1–2 шагов.

Личностные: положительно относятся к школе и имеют адекватное представление о ней.

Тип урока : изучение нового материала.

Ход урока.

-Добрый день, ребята! Сегодня на урок к нам пришли гости, давайте их поприветствуем. Садитесь

— К какому уроку мы приготовились? Что нам нужно на урок математики?

— Сейчас будет устный счёт, но справиться с ним только тот, кто будет внимательно слушать.

— Решите устно задачи. Ответ показываем веером цифр.

— За кустом спрятались медвежата. Видно 8 лапок. Сколько было медвежат? (2)

— Из будки торчат хвостики всех щенков. Сколько щенков в будке, если мы видим 9 хвостиков? (9)

— На столе стояло 7 свечей. Коля потушил одну свечу. Сколько свечей на столе? (7)

– Молодцы! Ушки вас не подвели. А теперь пускай помогут вам ваши глазки.

Посмотрите на доску:

–Что общего у всех выражений, записанных на доске?

(Все выражения на сложение, две карточки с одинаковым ответом)

–Как называются компоненты при сложении?

(1-е слагаемое, 2-е слагаемое, сумма)

-Посмотрите на выражения. Прочитайте их. Решите их.

-Что вы заметили? (слагаемые поменялись местами)

— А можно ли так поступать в математике?

— Не зря, ребята, мы повторили компоненты при сложении, они нам помогут

сегодня на уроке открыть математический закон.

2. Подготовка учащихся к активному сознательному усвоению знания.

— Нам необходимо узнать, можно ли переставлять местами слагаемые. Чтобы разобраться в этом вопросе, предлагаю провести исследование. Согласны?

Тогда начнём. Исследовать – это значит понять, установить. Предлагаю превратить наш класс в научно-исследовательскую лабораторию. Каждый из нас – сотрудник этой лаборатории, учёный-исследователь. Мы все равны. Мы – коллеги. Коллеги – это товарищи по работе. Как будем работать? (дружно, старательно, внимательно, с уважением).

1. Эксперемент :

— Прежде, чем выполним опыт, давайте запишем в тетради число. (25 января)

Подготовка к письму. – Сели ровно, спинку зафиксировали стульчиком. Взяли правильно ручку.

— В этом эксперементе нам помогут геометрические фигуры?

Ученики работают в паре, а один возле доски.

— Выложите слева 5 красных квадратов. Добавьте к 5 красным квадратам 1синий квадрат. Сколько получилось? (6)

— Давайте составим выражение и запишем его в тетрадь (на доске). (5+1=6)

— Поменяйте местами квадраты. Сначала положите 1синий квадрат, а затем добавьте 5 красных квадратов. Сколько получилось? (6)

— Давайте составим выражение и запишем его в тетрадь (на доске). (1+5=6)

— Сравните выражение: чем они похожи и чем отличаются? (Слагаемые одни и те же только поменяли местами, результат остается тот же)

— Ребята, скажите : какое выражение легче и быстрее сложить, решить? (к большему прибавить меньшее)

— К доске выйдут 1 мальчика и 3 девочки. Сколько всего детей(4)

— Как мы составим выражение и запишем в тетради? (запись в тетради и у доски)

— Поменяйтесь местами. Изменилось количество детей? (нет)

— Как мы составим выражение запишем в тетради? (запись в тетради и у доски)

— Вывод? (От перестановки слагаемых сумма не изменилась)

— Эту особенность ученые заметили давно. Они даже назвали ее математическим законом. Потому что закон выполняется всегда. Получается, что мы с вами, без посторонней помощи сделали научное открытие! Какие мы молодцы!

— И так, тема нашего урока : Перестановка слагаемых.

— Давайте откроем учебник и прочитаем тему урока на стр. 14.

правило на с. 14.

1. Читаем только глазками.

2. Читает один ученик, потом хором.

3. Рассказывают соседу по парте.

-Совпадает наше открытие с правилом в учебнике? (да)

-К какому выводу вы пришли? (От перестановки слагаемых сумма не изменяется)

— Порадуемся нашему открытию и пойдём дальше. Посмотрим, как можно использовать новое правило. Выполним задание, которое поможет его запомнить.

— Для чего нам нужно знать правило перестановки слагаемых? (легче к большему числу прибавить меньшее).

3. Усвоение новых знаний.

1. Работа по учебнику.

– Рассмотрите рисунок. Сколько красных точек на первой фишке домино? Сколько синих? Назовите пример. (3+2=5)

– Как получили второй пример? (Перевернули фишку)

– Сколько всего точек на первой фишке? Как изменится сумма, если фишку перевернуть? (Сумма не изменится)

– Объясните, как получили остальные примеры. Докажите, что ответы этих примеров будут одинаковые.

– Какие выражения легче было решить? (К большему прибавить меньшее).

4. Закрепление новых знаний.

На столах карточки с примерами. (работа в парах)

— Соедините пары примеров с одинаковым ответом, не вычисляя их.

— Вычислите выражение применяя правило.

( Дети формулируют алгоритм действий: легче к большему числу прибавить меньшее, т. к. от перестановки слагаемых сумма не изменяется.)

5. Итог урока.

— Какое открытие мы сделали?

— С каким правилом познакомились?

— Что произойдет, если поменять местами слагаемые?

Прикреплённые файлы:

perestanovka-slagaemyh_la21f.pptx | 2062,77 Кб

Интегрированный урок английского языка и математики «Время» в 4 классе Класс: 4 «а» инклюзивный Предмет: английский язык и математика Тема урока: Совершенствование речевых навыков учащихся: единицы времени.

Открытый урок математики в 1 классе на тему «Дециметр» Тема: «Дециметр» 1 класс Цель. Создать условия для усвоения умений измерять длины предметов в дециметрах и сантиметрах. Задачи. Дать представление.

Открытый урок математики в 4 классе «Встречное движение» Тема урока: Встречное движение. 4 класс Цели урока: • Формировать умение вести поиск и обнаружение способа решения задач на встречное движение.

Открытый урок СБО в 9 классе Раздел: Трудоустройство. Тема: Трудоустройство. Выбор профессии. Класс : 9класс Цель: Развитие у учащихся способности к профессиональному.

Урок Добра в 1 классе Цель урока: — сформировать в сознании детей понятие «доброта», — пробудить в детях чувство добра, милосердия, взаимопомощи, проявлять заботу.

Урок математики «Площадь фигур сложной конфигурации» в 3 классе УМК «Планета знаний» ЦЕЛЬ. Сформировать умения находить площадь фигур сложной конфигурации. Задачи. Вспомнить формулы нахождения S прямоугольника, S квадрата,.

Урок математики в 1 классе «Сложение и вычитание чисел в пределах 100» МБОУ «Гашунская СОШ им. Очирова А. В.» Тема урока: «Сложение и вычитание чисел в пределах 100» Составила: Босхомджиева Т. К. ,.

Урок математики в 4 классе по теме «Деление на трехзначное число» Тема: Деление на трехзначное число Цель: закрепление умения делить многозначные числа на трехзначное с использованием алгоритма деления.

Урок математики в 1 классе в форме урока-путешествия «Четвертая математическая галактика» по теме «Прибавление числа 4» Урок – путешествие «Четвертая математическая галактика» по теме «Прибавление числа 4» Цель: 1) образовательная – учить выполнять сложение.

Урок-экскурсия по музыке «Дыхание русской песенности» в 5 классе и в 11 классе «Церковное пение» Подготовка к уроку-экскурсии В гимназии в течении марта 2019 года учащиеся 5 и 11 классов стали инициаторами в организации совместного нестандартного.


источники:

http://zaochnik.com/spravochnik/matematika/vyrazhenija/tozhdestvennye-preobrazovanija-vyrazhenij/

http://www.maam.ru/detskijsad/urok-matematiki-v-1-klase-tema-perestanovka-slagaemyh-1038843.html