Правило решения произвольны систем линейных уравнений

Решение систем линейных уравнений

Решение систем линейных уравнений. Теорема Кронекера-Капелли

Пусть дана произвольная система линейных уравнений с неизвестными

Исчерпывающий ответ па вопрос о совместности этой системы дает теорема Кронекера-Капелла.

Теорема 4.1. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы.

Примем ее без доказательства.

Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.

Теорема 4.2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 4.3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений

  1. Найти ранги основной и расширенной матриц системы. Если , то система несовместна.
  2. Если , система совместна. Найти какой-либо базисный минор порядка г (напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные неизвестных называют свободными и переносят в правые части уравнений.
  3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.
  4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.

Пример №4.1.

Исследовать на совместность систему

Решение:

Таким образом, , следовательно, система несовместна.

На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:

Другие темы по высшей математике возможно вам они будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Системы линейных уравнений с примерами решений

Содержание:

Системы уравнений, как и отдельные уравнения, используют для решения сложных и необходимых задач. Системы уравнений бывают с двумя, тремя и более переменными. В этой главе вы ознакомитесь с простейшими системами двух уравнений с двумя переменными. Основные темы лекции:

  • уравнения с двумя переменными;
  • график линейного уравнения;
  • системы уравнений;
  • способ подстановки;
  • способ сложения;
  • решение задач составлением системы уравнений.

Уравнения с двумя переменными

До сих пор мы рассматривали уравнение с одной переменной. Однако существуют задачи, решение которых приводит к уравнениям с двумя переменными.

Пример:

На 22 руб. купили несколько книжек по 5 руб. и географических карт — по 3 руб. Сколько купили книжек и карт?

Решение:

Пусть купили х книжки у карт. За книжки заплатили 5х руб., а за карты — 3у руб. Всего заплатили 22 руб., то есть, 5х + Зу = 22.

Это уравнение с двумя переменными. Приведём и другие примеры таких уравнений с двумя переменными:

Уравнение вида ах + by = с, где а, b, с — данные числа, называется линейным уравнением с двумя переменными х и у. Если

Примеры линейных уравнений:

два первых из них — уравнение первой степени с двумя переменными.

Паре чисел х = -1 и у = 9 удовлетворяет уравнение 5х + Зу -= 22, так как А пара чисел х = 1 и у = 2 этому уравнению не удовлетворяет, поскольку

Каждая пара чисел, удовлетворяющая уравнение с двумя переменными, т. е. обращающая это уравнение в верное равенство, называется решением этого уравнения.

Обратите внимание: одно решение состоит из двух чисел, на первом месте записывают значение х, на втором — у. Корнями их не называют.

Чтобы найти решение уравнения с двумя переменными, следует подставить в уравнение произвольное значение первой неременной и, решив полученное уравнение, найти соответствующее значение второй переменной.

Для примера найдем несколько решений уравнения

Если х = 1, то отсюда у = -2. Пара чисел х = 1 и у = -2 — решение данного уравнения. Его записывают ещё и так: (1; -2). Придавая переменной х значения 2, 3, 4, . , так же можно найти сколько угодно решений уравнения: (2; 1), (3; 4), (4; 7), (5; 10), . Каждое уравнение первой степени с двумя переменными имеет бесконечно много решений.

Уравнение также имеет бесконечно много решений, но сформулированную выше задачу удовлетворяет только одно из них: (2; 4).

Два уравнения с двумя переменными называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считаются равносильными.

Для уравнения с двумя переменными остаются справедливыми свойства, сформулированные для уравнений с одной переменной.

Обе части уравнения с двумя переменными можно умножить или разделить на одно и то же число, отличное от нуля. Любой член такого уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный. В результате получается уравнение, равносильное данному.

Например, уравнение можно преобразовать так: . Каждое из этих уравнений равносильно друг другу.

Иногда возникает потребность решить уравнение с двумя переменными во множестве целых чисел, то есть определить решения, являющиеся парами целых чисел. Способы решения таких уравнений определил древнегреческий математик Диофант (III в.), поэтому их называют диофантовыми уравнениями. Например, задача о книжках и картах сводится к уравнению где х и у могут быть только целыми (иногда натуральными) числами.

Переменную у из этого уравнения выразим через х:

Будем подставлять в равенство вместо х первые натуральные числа до тех пор, пока не получим целое значение переменной у. Это можно делать устно. Если х = 2, то у = 4. Других натуральных решений уравнение не имеет. Поэтому задача имеет единственное решение: 2 книги и 4 карты.

Пример:

Решение:

а) При любых значениях х и у значения выражения не может быть отрицательным числом. Поэтому уравнение не имеет решений.

б) Значение выражения равно нулю только при условии, когда x -3 = 0 и y = 0. Значит, уравнение имеет только одно решение: х = 3, у = 0.

Пример:

Составьте уравнение с двумя переменными, решением которого будет пара чисел (1; -5).

Решение:

Пишем любой двучлен с переменными х и у, например Если х = 1, а у = -5, то значение даного двучлена равно 28. Следовательно, уравнение удовлетворяет условие задачи.

Есть много других линейных уравнений с двумя переменными, имеющих такое же решение (1; -5).

График линейного уравнения с двумя переменными

Рассмотрим уравнение Давая переменной х значения -2, -1,0,1,2, 3. найдём соответствующие значения переменной у. Будем иметь решение данного уравнения: (-2; -б), (-1; -4,5), (0; -3),

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Решение произвольных систем линейных уравнений

Тема 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. Матрицы. Сложение матриц; умножение матрицы на число; произведение матриц. Обратная матрица.

2. Определители n-го порядка и их свойства. Методы вычисления определителей.

3. Обратная матрица.

5. Решение невырожденных систем линейных уравнений.

6. Теорема Кронекера – Капелли. Решение произвольных линейных систем.

Решение невырожденных систем линейных уравнений

Пусть задана система линейных уравнений

(1.1)

где заданные числа, неизвестные, .

Решением системы (1.1) называется такое множество значений неиз­вестных , при которых каждое уравнение обра­щается в тождество.

Система уравнений, имеющая хотя бы одно решение, называется совместной, а система, не имеющая решений – несовместной.

и

называются матрицей системы и расширенной матрицей системы соответственно.

Рассмотрим случай, когда число уравнений m системы совпадает с числом неизвестных n (m = n). Тогда матрица системы А является квадратной матрицей порядка n.

Система n уравнений с n неизвестными называется невырожденной, если определитель матрицы системы А отличен от нуля ( ).

Невырожденная система имеет единственное решение. Существует два метода решения таких систем.

1. Правило Крамера. Если определитель Δ отличен от нуля, то решение системы находится по формулам

, (1.2)

где определитель, полученный из определителя Δ заменой j–го столбца столбцом свободных членов.

2. Матричный метод. Введем матрицу столбец свободных членов системы и матрицу-столбец неизвестных .

Тогда систему n уравнений с n неизвестными можно записать в виде

. (1.3)

Эта форма записи системы называется матричной.

Матрицей , обратной к матрице А размера , называется такая матрица, для которой справедливо равенство

,

где Е – единичная матрица n-го порядка.

Матрица, определитель которой не равен нулю, называется невырожденной.

Для того чтобы данная матрица имела обратную, необходимо и достаточно, чтобы она была невырожденной.

Рассмотрим уравнение (1.3). Пусть А – невырожденная матрица. Тогда решение системы можно найти по формуле

. (1.4)

Пример 1.1. Проверить невырожденность системы линейных уравне­ний и решить ее: а) по формулам Крамера; б) матричным методом.

Решение. Запишем матрицу системы . Проверим невы­рожденность системы. Для этого вычисляем определитель Δ матрицы А:

.

Так как , то система невырождена. Решаем ее

а) по формулам Крамера.

.

По формулам (1.2) находим решение системы:

Делаем проверку: .

б) матричным методом.

Находим обратную матрицу

,

где союзная матрица, составленная из алгебраических дополнений элементов матрицы А.

, ,

где определитель, полученный из определителя Δ вычеркиванием i-й строки и j-го столбца. Имеем:

,

,

.

.

По формуле (1.4) находим решение:

.

Ответ: .

Решение произвольных систем линейных уравнений

Рассмотрим произвольную систему линейных уравнений (1.1).

Элементарными преобразованиями матрицы называются:

а) перестановка местами любых двух строк;

б) умножение строки на некоторое число ;

в) прибавление к одной строке матрицы любой другой строки, умноженной на некоторое число;

г) удаление нулевой строки.

Решение системы методом ЖорданаГаусса основано на следующем утверждении: элементарные преобразования расширенной матрицы системы не изменяют множества решений системы.

Суть метода заключается в том, чтобы при помощи элементарных преобразований привести расширенную матрицу к наиболее простому виду.

С помощью операции в) можно исключить какое-либо неизвестное из всех уравнений, кроме одного.

Переменная называется базисной в i–м уравнении, если при .

Матрица системы с помощью элементарных преобразований приводит­ся к так называемому базисному виду, если в каждом уравнении системы есть базисная переменная.

Если матрица системы приведена к базисному виду, то переменные, не являющиеся базисными, называются свободными.

Решение системы, полученное после приравнивания нулю всех свободных переменных, называется базисным.

Опишем одну итерацию метода ЖорданаГаусса.

В первой строке расширенной матрицы находим ненулевой элемент . Если таковых нет, то в случае вычеркиваем данную нулевую строку; если , то система несовместна.

Элемент называют ведущим элементом.

Если , то делим первую строку расширенной матрицы на этот элемент . Ко всем строкам, кроме первой, прибавляем первую строку, умноженную на ( ), где i – номер изменяемой строки.

После этой операции коэффициент при в первом уравнении будет равен единице, а во всех остальных уравнениях – нулю. Следовательно, переменная станет базисной.

Описанную итерацию проводим для остальных строк расширенной матрицы, пока не получим m базисных неизвестных ( в каждом уравнении – по одной базисной переменной).

После этого находим общее решение и базисное (приравнивая свободные неизвестные нулю).

Пример 1.2. Решить систему линейных уравнений

методом ЖорданаГаусса. Найти общее и базисное решения.

Решение. Вычисления будем производить в таблице. В исходной части таблицы записываем расширенную матрицу системы.

В первой строке выберем элемент ведущим. Выделим ведущий элемент рамкой. Изменяем вторую, третью и четвертую строки: ко второй строке по элементам прибавляем первую строку, умноженную на (-3), к третьей – первую строку, умноженную на (-1), и к четвертой – первую строку, умноженную на (-3). В результате получим таблицу, в которой переменная стала базисной.

Выбираем элемент ведущим. С помощью элементарных преобразований получаем таблицу, в которой переменная стала базисной.

Выбираем, например, элемент ведущим и делим на него элементы третьей строки. Получаем таблицу

.

Теперь делаем нули в остальных строках четвертого столбца. Получаем таблицу, в которой переменная стала базисной.

Удаляем вторую нулевую строку, получаем таблицу

.

Поскольку каждое уравнение теперь содержит по одной базисной переменной, то оставшаяся небазисная переменная является свободной.

Полагаем . Из последней строки таблицы получаем .

Из второй строки следует , откуда находим или .

Из первой строки следует , откуда получаем или .

Выписываем общее решение: .

Найдем базисное решение. Положим . Тогда имеем .

Сделаем проверку, подставляя найденное решение в исходную систему

Ответ. Общее решение: , базисное решение: .

Задание 1. Проверить невырожденность системы линейных уравне­ний и решить ее: а) по формулам Крамера; б) матричным методом.

1.1. 1.2. 1.3.

1.4. 1.5 1.6.

1.7 1.8. 1.9

1.10. 1.11. 1.12.

1.13. 1.14. 1.15

1.16. 1.17 1.18.

1.19. 1.20. 1.21.

1.22. 1.23. 1.24.

1.25. 1.26. 1.27.

1.28. 1.29. 1.30.

Задание 2. Решить систему линейных уравнений методом Жордана–Гаусса. Найти общее и базисное решения.

2.1. 2.2.

2.3. 2.4.

2.5. 2.6.

2.7. 2.8.

2.9. 2.10.

2.11. 2.12.

2.13. 2.14.

2.15. 2.16.

2.17. 2.18.

2.19. 2.20.

2.21. 2.22.

2.23. 2.24.

2.25. 2.26.

2.27. 2.28.

2.29. 2.30.


источники:

http://www.evkova.org/sistemyi-linejnyih-uravnenij

http://allrefrs.ru/5-46662.html