Преобразование тригонометрических уравнений в квадратное

Основные методы решения тригонометрических уравнений

п.1. Разложение на множители

Алгоритм простого разложения на множители

Шаг 1. Представить уравнение в виде произведения \(f_1(x)\cdot f_2(x)\cdot . \cdot f_n(x)=0\) где \(f_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить совокупность уравнений: \( \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right. \)
Шаг 3. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2cosx cos2x=cosx\) \begin 2cosx cos2x-cosx=0\\ cosx(2cos2x-1)=0\\ \left[ \begin cosx=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \end

Мы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые \(60^<\circ>=\frac\pi3\)
Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

Возможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара \(\frac\pi2+\pi k,\ \ \pm\frac\pi6+\pi k\), равнозначная c \(\frac\pi6+\frac<\pi k><3>\).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.

Алгоритм разложения на множители со знаменателем

Шаг 1. Представить уравнение в виде произведения $$ \frac=0 $$ где \(f_i(x),\ g_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить смешанную систему уравнений: \( \begin \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right.\\ g_1(x)\ne 0\\ g_2(x)\ne 0\\ . \\ g_m(x)\ne 0\\ \end \)
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.

Например:
Решим уравнение \(ctgx-tgx=\frac<\frac12 sin2x>\)
Левая часть уравнения: $$ ctgx-tgx=\frac-\frac=\frac=\frac<(cosx-sinx)(cosx+sinx)> <\frac12sin2x>$$ Подставляем, переносим правую часть влево: $$ \frac<(cosx-sinx)(cosx+sinx)><\frac12sin2x>-\frac<\frac12sin2x>=0 $$ Выносим общий множитель, умножаем на \(1/2\) слева и справа, получаем: $$ \frac<(cosx-sinx)(cosx+sinx-1)>=0 $$ В этом уравнении учтено ОДЗ для \(ctgx\) и \(tgx\). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: \begin \begin \left[ \begin cosx-sinx=0\\ cosx+sinx=1 \end \right.\\ sin2x\ne 0 \end \end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): \begin cosx-sinx=0\ \ |: cosx\\ 1-tgx=0\Rightarrow tgx=1\Rightarrow x=\frac\pi4+\pi k \end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): \begin cosx-sinx=1\ \ | \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>cosx+\frac<\sqrt<2>><2>sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4\right)cosx+sin\left(\frac\pi4\right)sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4-x\right)=cos\left(x-\frac\pi4\right)=cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>> <2>\Rightarrow x-\frac\pi4=\pm\frac\pi4+2\pi k\Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Решаем исключающее уравнение для знаменателя: $$ sin2x\ne 0\Rightarrow 2x\ne \pi k\Rightarrow x\ne\frac<\pi k> <2>$$

Записываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: \begin \begin \left[ \begin x=\frac\pi4+\pi k\\ x=2\pi k\\ x=\frac\pi2+2\pi k\Leftrightarrow x=\frac\pi4+\pi k \end \right.\\ x\ne\frac<\pi k> <2>\end \end

За счет требования \(x\ne\frac<\pi k><2>\) исключаются семейства \(x=\frac\pi2+2pi k\) и \(x=2\pi k\).
Остается только \(x=\frac\pi4+\pi k\).
Ответ: \(\frac\pi4+\pi k\)

п.2. Приведение к квадратному уравнению

Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где \(f(x)\) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: \(t=f(x)\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Если \(f(x)\) — синус или косинус, проверить условие \(-1\leq t_<1,2>\leq 1\). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений \( \left[ \begin f(x)=t_1\\ f(x)=t_2 \end \right. \) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(3sin^2x+10cosx-6=0\)
Заменим \(sin^2x=1-cos^2x\). Получаем: \begin 3(1-cos^2x)+10cosx-6=0\\ -3cos^2x+10cosx-3=0\\ 3cos^2x-10cosx+3=0\\ \text<Замена:>\ t=cosx,\ \ -1\leq t\leq 1\\ 3t^2-10t+3=0\\ D=(-10)^2-4\cdot 3\cdot 3=64\\ t=\frac<10\pm 8><6>= \left[ \begin \frac13\\ 3\gt 1 — \text <не подходит>\end \right. \end Решаем \(cosx=\frac13\Rightarrow x=\pm arccos\frac13+2\pi k\)
Ответ: \(\pm arccos\frac13+2\pi k\)

п.3. Приведению к однородному уравнению

Алгоритм решения однородного тригонометрического уравнения 1-й степени

Например:
Решим уравнение \(sinx+cosx=0\)
Делим на \(cosx\). Получаем: \(tgx+1=0\Rightarrow tgx=-1\Rightarrow x=-\frac\pi4+\pi k\)
Ответ: \(-\frac\pi4+\pi k\)

Алгоритм решения однородного тригонометрического уравнения 2-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^2x\) \begin \frac=\frac<0>\\ Atg^2x+Btgx+C=0 \end Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2 \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(6sin^2x-sinxcosx-cos^2x=3\)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): \begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\\ 3sin^2x-sinxcosx-4cos^2x=0\ |:\ cos^2x\\ 3tg^2x-tgx-4=0\\ \text<Зaмена:>\ t=tgx\\ 3t^2-t-4=0\\ D=(-1)^2-4\cdot 3\cdot(-4)=49\\ t=\frac<1\pm 7><6>= \left[ \begin -1\\ \frac43 \end \right. \end Решаем совокупность: \( \left[ \begin tgx=-1\\ tgx=\frac43 \end \right. \Rightarrow \left[ \begin x=-\frac\pi4+\pi k\\ x=arctg\frac43+\pi k \end \right. \)
Ответ: \(-\frac\pi4+\pi k,\ \ arctg\frac43+\pi k\)

Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:

Алгоритм решения однородного тригонометрического уравнения n-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^n x\)
Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное алгебраическое уравнение: \begin a_0t^n+a_1t^+. +a_n=0 \end Найти корни \(t_1, t_2. t_k,\ k\leq n\)
Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2\\ . \\ tgx=t_k \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2sin^3x=cosx\)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: \begin 2sin^3x=cosx(sin^2x+cos^2x)\\ 2sin^3x-sin^2xcosx-cos^3x=0\ |:\ cos^3x\\ 2tg^x-tg^2x-1=0\\ \end Замена \(t=tgx\) дает кубическое уравнение: \(2t^3-t^2-1=0\)
Раскладываем на множители: \begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\\ =(t-1)(2t^2+t+1) \end Вторая скобка на множители не раскладывается, т.к. \(D=1-4\cdot 2=-7 \lt 0\).
Получаем: \(2t^3-t^2-1=0\Leftrightarrow t-1=0\)
Возвращаемся к исходной переменной:
\(tgx=1\Rightarrow x=\frac\pi4+\pi k\)
Ответ: \(\frac\pi4+\pi k\)

п.4. Введение вспомогательного угла

Например:
Решим уравнение \(\sqrt<3>sin3x-cos3x=1\)
Делим уравнение на \( p=\sqrt<3+1>=2: \) \begin \sqrt<3>sin3x-cos3x=1 |:\ 2\\ \frac<\sqrt<3>><2>sin3x-\frac12cos3x=\frac12\\ sin\left(\frac\pi3\right)sin3x-cos\left(\frac\pi3\right)cos3x=\frac12\\ cos\left(\frac\pi3\right)cos3x-sin\left(\frac\pi3\right)sin3x=-\frac12\\ cos\left(3x+\frac\pi3\right)=-\frac12\Rightarrow 3x+\frac\pi3=\pm\frac<2\pi><3>+2\pi k\Rightarrow 3x= \left[ \begin -\pi+2\pi k\\ \frac\pi3+2\pi k \end \right. \Rightarrow x= \left[ \begin -\frac\pi3+\frac<2\pi k><3>\\ \frac\pi9+\frac<2\pi k> <3>\end \right. \end
Ответ: \(-\frac\pi3+\frac<2\pi k><3>,\ \ \frac\pi9+\frac<2\pi k><3>\)

п.5. Преобразование суммы тригонометрических функций в произведение

При решении уравнений вида \begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 \end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).

Например:
Решим уравнение \(cos3x+sin2x-sin4x=0\)
Заметим, что: $$ sin2x-sin4x=2sin\frac<2x-4x><2>cos\frac<2x+4x>=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: \begin cos3x-2sinxcos3x=0\\ cos3x(1-2sinx)=0\\ \left[ \begin cos3x=0\\ 1-2sinx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ sinx=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=(-1)^k\frac\pi6+\pi k= \left[ \begin x=\frac\pi6+2\pi k\\ \frac<5\pi><6>+2\pi k \end \right. \end \right. \end Чтобы было понятней, распишем полученные множества в градусах: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k\\ x=\frac\pi6+2\pi k=30^<\circ>+360^<\circ>k\Leftrightarrow x=30^<\circ>+60^<\circ>k=\frac\pi6+\frac<\pi k><3>\\ x=\frac<5\pi><6>+2\pi k=150^<\circ>+360^<\circ>k \end \right. \end

Получаем, что семейства решений \(\frac\pi6+2\pi k\) и \(\frac<5\pi><6>+2\pi k\) уже содержатся во множестве \(\frac\pi6+\frac<\pi k><3>\).

п.6. Преобразование произведения тригонометрических функций в сумму

При решении уравнений вида \begin sinax\cdot cosbx=sincx\cdot cosdx,\ \ sinax\cdot sinbx=sincx\cdot cosdx\ \ \text <и т.п.>\end используются формулы, выведенные в §18 данного справочника.

Например:
Решим уравнение \(sin5xcos3x=sin6xcos2x\)
Заметим, что: \begin sin5xcos3x=\frac<2>=\frac<2>\\ sin6xcos2x=\frac<2>=\frac <2>\end Подставляем: \begin \frac<2>=\frac<2>\ |\times 2\\ sin8x-sin2x=sin8x-sin4x\\ sin4x-sin2x=0\\ 2sin2xcos2x-sin2x=0\\ sin2x(2cos2x-1)=0\\ \left[ \begin sin2x=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin 2x=\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \end

Семейства решений не пересекаются.

Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: \( \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pi k \end \right. \)

п.7. Понижение степени

При решении уравнений вида \begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A \end используются формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>,\ \ cos^2x=\frac<1+cos2x> <2>\end (см. формулы половинного аргумента, §15 данного справочника).

Например:
Решим уравнение \(sin^2x+sin^22x=1\)
Расписываем квадраты синусов через формулу понижения степени: \begin \frac<1-cos2x><2>+\frac<1-cos4x><2>=1\\ cos2x+cos4x=0\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=0\\ cos3xcosx=0\\ \left[ \begin cos3x=0\\ cosx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ x=\frac\pi2+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \end

\(x=\frac\pi2+\pi k\) является подмножеством \(x=\frac\pi6+\frac<\pi k><3>\)
Поэтому \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

п.8. Замена переменных

При решении уравнений вида \(f(sinx\pm cosx,\ sinxcosx)=0\) используется замена \begin t=cosx\pm sinx \end

Например:
Решим уравнение \(sinx+cosx=1+sinxcosx\)
Замена: \(t=sinx+cosx\)
Тогда \(t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosx\Rightarrow sinxcosx=\frac<2>\)
Подставляем: \begin t=1+\frac<2>\Rightarrow 2(t-1)=t^2-1\Rightarrow t^2-2t+1=0\Rightarrow (t-1)^2=0\Rightarrow t=1\\ sinx+cosx=1\ |\ \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>sinx+\frac<\sqrt<2>><2>cosx=\frac<\sqrt<2>><2>\\ sin\frac\pi4 sinx+cos\frac\pi4 cosx=\frac<\sqrt<2>><2>\\ cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>><2>\Rightarrow x-\frac\pi4=\pm\frac\pi4 + 2\pi k\Rightarrow \Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Ответ: \(2\pi k,\ \ \frac\pi2+2\pi k\)

п.9. Использование ограничений области значений функций

Уравнения вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: \( \begin sinax=1\\ sinbx=1\\ . \\ cosdx=1\\ . \end \)
Находим пересечение (!) полученных семейств решений и записываем ответ.

Аналогично, уравнение вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно -1.

Например:
Решим уравнение \(sinx+cos4x=2\)
Для этого нужно решить систему: \begin \begin sinx=1\\ cos4x=1 \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ 4x=2\pi k \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \end

Пересечением двух семейств решений будет только \(\frac\pi2+2\pi k\).
Поэтому \begin \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \Leftrightarrow x=\frac\pi2+2\pi k \end

п.10. Примеры

Пример 1. Используя различные методы, решите уравнения:
a) \(4sin\left(\frac\pi2\right)+5sin^2x=4\)
Приводим уравнение к квадратному:
\(5sin^x+4cosx-4=0\)
\(5(1-cos^2x)+4cosx-4=0\)
\(-5cos^2x+4cosx+1=0\)
\(5cos^2x-4cosx-1=0\)
Замена: \(t=cosx,\ \ -1\leq t\leq 1\) \begin 5t^2-4t-1=0\Rightarrow (5t+1)(t-1)=0\Rightarrow \left[ \begin t_1=-\frac15\\ t_2=1 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin cosx=-\frac15\\ cosx=1 \end \right. \Rightarrow \left[ \begin x=\pm arccos\left(-\frac15\right)+2\pi k\\ x=2\pi k \end \right. \end Ответ: \(\pm arccos\left(-\frac15\right)+2\pi k,\ \ 2\pi k\)

б) \(6sinxcosx=5cos2x\)
\(6sinxcosx=3\cdot 2sinxcosx=3sin2x\)
Приводим уравнение к однородному 1-й степени:
\(3sin2x=5cos2x\ |\ :\ cos2x\)
\(3tg2x=5\Rightarrow tg2x=\frac53\Rightarrow 2x=arctg\frac53+\pi k\Rightarrow x=\frac12 arctg\frac53+\frac<\pi k><2>\)
Ответ: \(\frac12 arctg\frac53+\frac<\pi k><2>\)

в) \(9cos^2x-5sin2x=-sin^2x\)
\(5sin2x=5\cdot 2sinxcosx=10sinxcosx\)
Приводим уравнение к однородному 2-й степени:
\(sin^2x-10sinxcosx+9cos^2x=0\ |:\ cos^2x\)
\(tg^2x-10tgx+9=0\)
Замена: \(t=tgx\) \begin t^2-10+9=0\Rightarrow (t-1)(t-9)=0\Rightarrow \left[ \begin t_1=1\\ t_2=9 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin tgx=1\\ tgx=9 \end \right. \Rightarrow \left[ \begin x=\frac\pi4+\pi k\\ x=arctg9+\pi k \end \right. \end Ответ: \(\frac\pi4+\pi k,\ \ arctg9+\pi k\)

г) \(cos3x-1=cos6x\)
Косинус двойного угла: \(cos6x=2cos^2 3x-1\)
Подставляем и раскладываем на множители:
\(cos3x-1=2cos^2 3x-1\)
\(cos3x-2cos^2 3x=0\)
\(cos3x(1-2cos3x)=0\) \begin \left[ \begin cos3x=0\\ 1-2cos3x=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ cos3x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ 3x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pm\frac\pi9+\frac<2\pi k> <3>\end \right. \end Чтобы проверить пересечения, распишем семейства решений через градусы: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k=<. -90^<\circ>,-30^<\circ>,30^<\circ>,90^<\circ>,150^<\circ>. >\\ x=\pm\frac\pi9+\frac<2\pi k><3>= \left[ \begin -20^<\circ>+120^<\circ>k=<. -140^<\circ>,-20^<\circ>,100^<\circ>. >\\ 20^<\circ>+120^<\circ>k=<. -100^<\circ>,20^<\circ>,140^<\circ>. > \end \right. \end \right. \end Семейства не пересекаются.
Ответ: \(\frac\pi6+\frac<\pi k><3>,\ \ \pm\frac\pi9+\frac<2\pi k><3>\)

д) \(\sqrt<3>sin2x-cos2x=-\sqrt<3>\)
Разделим на \(p=\sqrt<3+1>\) и введем дополнительный угол:
\(\frac<\sqrt<3>><2>sin2x-\frac12 cos2x=-\frac<\sqrt<3>><2>\)
\(\frac12cos2x-\frac<\sqrt<3>><2>sin2x=\frac<\sqrt<3>><2>\)
\(cos\left(2x-\frac\pi3\right)=\frac<\sqrt<3>><2>\)
\(2x-\frac\pi3=\pm\frac\pi6+2\pi k\)
\(2x=\frac\pi3\pm\frac\pi6+2\pi k= \left[ \begin -\frac<\pi><6>+2\pi k\\ \frac\pi2+2\pi k \end \right. \)
\( \left[ \begin x=-\frac<\pi><12>+\pi k\\ x=\frac\pi4+\pi k \end \right. \) Семейства решений не пересекаются.
Ответ: \(-\frac<\pi><12>+\pi k,\ \ \frac\pi4+\pi k\)

е) \(cos^2x+cos^2 2x=cos^2 3x+cos^2 4x\)
Формула понижения степени: \(cos^2x=\frac<1+cos2x><2>\)
Подставляем: \begin \frac<1+cos2x><2>+\frac<1+cos4x><2>=\frac<1+cos6x><2>+\frac<1+cos8x><2>\\ cos2x+cos4x=cos6x+cos8x\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=2cos\frac<6x+8x><2>cos\frac<6x-8x><2>\ |:\ 2\\ cos3xcosx=cos7xcosx=0\\ cos3xcosx-cos7xcosx=0\\ cosx(cos3x-cos7x)=0\\ cosx\left(-2sin\frac<3x+7x><2>sin\frac<3x-7x><2>\right)=0\\ -2cosxsin5xsin(-2x)=0\\ 2cosxsin5xsin2x=0\\ cosxsin5xsin2x=0\\ \left[ \begin cosx=0\\ sin5x=0\\ sin2x=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 5x=\pi k\\ 2x=\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Семейство решений \(x=\frac\pi2+\pi k\) (базовые точки 90°, 270° на числовой окружности) является подмножеством для \(x=\frac<\pi k><2>\) (базовые точки 0°, 90°, 180°, 270°). Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \Rightarrow \left[ \begin x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Ответ: \(\frac<\pi k><5>,\ \ \frac<\pi k><2>\)

Пример 2*. Решите уравнения:
a) \begin \frac<4>-\frac<18>+\frac=0 \end ОДЗ: \(tgx\ne \pm 3\)
1) Если \(cosx\ne 0\), то последнее слагаемое \(\frac=\frac<\frac><\frac>=\frac\)
Получаем: \begin \frac<4>-\frac<18>+\frac=0\\ \frac<4(tgx-3)-18+tgx(tgx+3)><(tgx+3)(tgx-3)>=0\\ \frac<(tgx+3)(tgx-3)>=0\\ \end Замена: \(t=tgx\) \begin \frac<(t+3)(t-3)>\Rightarrow \begin t^2+7t-30=0\\ t\ne\pm3 \end \Rightarrow \begin (t+10)(t-3)=0\\ t\ne\pm3 \end \Rightarrow \begin \left[ \begin t=-10\\ t=3 \end \right.\\ t\ne\pm3 \end \Rightarrow\\ t=-10 \end Получаем: \begin tgx=-10\\ x=arctg(-10)+\pi k=-arctg10+\pi k \end
2) Проверим, является ли \(cosx=0\) решением.
При \(cosx=0,\ x=\frac\pi2+\pi k,\ tgx\rightarrow\infty\). Первое слагаемое \(\frac<4>\rightarrow\frac<4><\infty>\rightarrow 0\)
Второе слагаемое \(\frac<18>\rightarrow\frac<18><\infty>\rightarrow 0\)
Третье слагаемое \(\frac\rightarrow\frac<1><1-0>=1\ne 0\)
Сумма слагаемых в пределе \(tgx\rightarrow\infty\) равна \(0+0+1=1\ne 0\)
\(cosx=0\) решением не является.
Ответ: \(-arctg10+\pi k\)

б) \(\frac<3>+1=7\frac<|cosx|>\)
ОДЗ: \(cosx\ne 0,\ x\ne\frac\pi2+\pi k\) \begin |cosx|= \begin cosx,\ -\frac\pi2+2\pi k\leq x\lt \frac\pi2+2\pi k\\ -cosx,\ \frac\pi2+2\pi k\leq x\lt \frac<3\pi2><2>+2\pi k \end \end 1) Решаем для положительного косинуса (1-я и 4-я четверти) \begin \frac<3>+1=7\frac\\ 3(1+tg^2x)+1-7tgx=0\\ 3tg^2-7tgx+4=0\\ (3tgx-4)(tgx-1)=0\\ \left[ \begin tgx=\frac43\\ tgx=1 \end \right. \Rightarrow \left[ \begin x=arctg\frac43+\pi k\\ x=\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(\frac\pi4,\ arctg\frac43,\ \frac<5\pi><4>\) и \(\pi+arctg\frac43\), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
\(\frac\pi4\) и \(arctg\frac43\).
Это означает, что в записи решения период будет не \(\pi k\), а \(2\pi k\). \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k \end \right. \end

2) Решаем для отрицательного косинуса (2-я и 3-я четверти) \begin \frac<3>+1=-7\frac\\ 3(1+tg^2x)+1+7tgx=0\\ 3tg^2x+7tgx+4=0\\ (3tgx+4)(tgx+1)=0\\ \left[ \begin tgx=-\frac43\\ tgx=-1 \end \right. \Rightarrow \left[ \begin x=-arctg\frac43+\pi k\\ x=-\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(-\frac\pi4,\ -arctg\frac43,\ \frac<3\pi><4>\) и \(\pi-arctg\frac43\), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
\(\frac<3\pi><4>\) и \(\pi-arctg\frac43\).
Это означает, что в записи решения будут выбранные точки с периодом \(2\pi k\). \begin \left[ \begin x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

3) Объединяем полученные решения: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k\\ x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

По аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\pi-arctg\frac43+2\pi k \end \right. \Leftrightarrow x=(-1)^k arctg\frac43+\pi k\\ \left[ \begin x=\frac\pi4+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^k \frac\pi4+\pi k\\ \end

Окончательно получаем: \( \left[ \begin x=(-1)^k arctg\frac43+\pi k\\ x=(-1)^k \frac\pi4+\pi k \end \right. \).
Ответ: \((-1)^k arctg\frac43+\pi k,\ \ (-1)^k \frac\pi4+\pi k\)

г) \(3sinx-4cosx=5\)
Способ 1. Вводим дополнительный угол:
\(p=\sqrt<3^2+4^2>=5\)
\(\frac35sinx-\frac45 cosx=1\)
\(sin\alpha=\frac35,\ cos\alpha=\frac45\)
\(sin\alpha sinx-cos\alpha cosx=1\)
\(cos\alpha cosx-sin\alpha sinx=-1\)
\(cos(x+\alpha)=-1\)
\(x+\alpha=\pi+2\pi k\)
\(x=-\alpha+\pi+2\pi k=-arcsin\frac35+\pi+2\pi k\)

Способ 2. Делаем универсальную подстановку: \begin sin\alpha=\frac<2tg\frac<\alpha><2>><1+tg^2\frac\alpha2>,\ \ cos\alpha=\frac<1-tg^2\frac\alpha2><1+tg^2\frac\alpha2>\\ 3\cdot \frac<2tg\frac<2>><1+tg^2\frac<2>>-4\cdot\frac<1-tg^2\frac<2>><1+tg^2\frac<2>>=5\\ \frac<6tg\frac<2>-4\left(1-tg^2\frac<2>\right)-5\left(1+tg^2\frac<2>\right)><1+tg^2\frac<2>>=0 \end \(1=tg^2\frac<2>\geq 1\), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: \begin -tg^2\frac<2>+6tg\frac<2>-9=0\Rightarrow tg^2\frac<2>-6tg\frac<2>+9=0\Rightarrow\left(tg\frac<2>-3\right)^2=0\Rightarrow tg\frac<2>=3\\ \frac<2>=arctg3+\pi k\Rightarrow x= 2arctg3+2\pi k \end

Докажем, что полученные ответы: $$ x=-arcsin\frac35+\pi+2\pi k\ \ \text<и>\ x=2arctg3+2\pi k $$ равнозначны, т.е. \(-arcsin\frac35+\pi=2arctg3\), и равны углы: $$ arcsin\frac35=\pi-2arctg3\ \ (*) $$ Пусть в правой части равенства (*) \(2arctg3=\varphi\). Тогда \(arctg3=\frac\varphi2\) и \(tg\frac\varphi2=3\).
А в левой части равенства (*) \(arcsin\frac35=\alpha\) и \(sin\alpha=\frac35\)
Угол \(0\lt arcsin\frac35\lt \frac\pi2\) расположен в 1-й четверти.
Угол \(\varphi=2arctg3\) расположен во 2-й четверти \((cos\varphi\lt 0,\ sin\varphi\gt 0)\). $$ cos\varphi=\frac<1-tg^2\frac\varphi2><1+tg^2\frac\varphi2>=\frac<1-3^2><1+3^2>=-\frac45,\ \ sin\varphi=\frac<2tg\frac\varphi2><1+tg^2\frac\varphi2>=\frac<2\cdot 3><1+3^2>=\frac35 $$ Получаем, что для угла \(\alpha:\ sin\alpha=\frac35,\ cos\alpha=\frac45\)
Для угла \(\varphi:\ sin\varphi=\frac35,\ cos\varphi=-\frac45\)
Откуда следует, что \(\alpha=\pi-\varphi\). Что и требовалось доказать.
Ответ: \(-arcsin\frac35+\pi+2\pi k\) или \(2arctg3+2\pi k\) (т.к. \(-arcsin\frac35+\pi=2arctg3)\)

Как решать тригонометрические уравнения, сводящиеся к квадратным — примеры

Основные понятия по теме

Тригонометрическими уравнениями называют уравнения с неизвестной, которая расположена строго под знаком тригонометрической функции.

Квадратные тригонометрические уравнения являются такими уравнениями, которые имеют вид:

a sin 2 x + b sin x + c = 0

Здесь a отлично от нуля.

Тригонометрические уравнения, сводящиеся к квадратным, обладают следующими признаками:

  1. Наличие в уравнении тригонометрических функций от одного аргумента, либо таких, которые можно просто свести к одному аргументу.
  2. Присутствие в уравнении единственной тригонометрической функции, либо все функции можно свести к одной.

Правила решения тригонометрических уравнений сводящихся к квадратным

Рассмотрим случай, когда преобразованное уравнение записано таким образом:

a f 2 ( x ) + b f ( x ) + c = 0

При этом а отлично от нуля, f ( x ) является одной из функций sin x , cos x , tg x , ctg x .

Тогда данное уравнение путем замены f ( x ) = t сводится к квадратному уравнению.

Существует ряд правил, позволяющих решать тригонометрические уравнения, сводящиеся к квадратным. Данная информация будет полезна при выполнении самостоятельных работ и практических заданий в десятом классе.

sin 2 α + cos 2 α = 1 tg α · ctg α = 1 tg α = sin α cos α ctg α = cos α sin α 1 + tg 2 α = 1 cos 2 α 1 + ctg 2 α = 1 sin 2 α ▸

Формулы двойного угла:

sin 2 α = 2 sin α cos α cos 2 α = cos 2 α — sin 2 α sin α cos α = 1 2 sin 2 α cos 2 α = 2 cos 2 α — 1 cos 2 α = 1 — 2 sin 2 α tg 2 α = 2 tg α 1 — tg 2 α ctg 2 α = ctg 2 α — 1 2 ctg α ▸

Последовательность действий при решении тригонометрических уравнений, сводящихся к квадратным:

  • выражение одной тригонометрической функции с помощью другой путем применения основных тождеств;
  • выполнение подстановки;
  • преобразование уравнения;
  • введение обозначения, к примеру, sin x = y;
  • решение квадратного уравнения;
  • обратная замена;
  • решение тригонометрического уравнения.

Рассмотрим решение тригонометрического уравнения:

6 cos 2 x — 13 sin x — 13 = 0

cos 2 α = 1 — sin 2 α

В результате уравнение преобразуется таким образом:

6 sin 2 x + 13 sin x + 7 = 0

Заменим sin x на t. Зная, что ОДЗ синуса sin x ∈ [ — 1 ; 1 ] , запишем, t ∈ [ — 1 ; 1 ] . Тогда:

6 t 2 + 13 t + 7 = 0

Заметим, что t 1 не соответствует условиям. Выполним обратную замену и получим решение уравнения:

sin x = — 1 ⇒ x = — π 2 + 2 π n , n ∈ ℤ .

Разберем другой пример:

5 sin 2 x = cos 4 x — 3

Воспользуемся уравнением двойного угла для косинуса:

cos 2 α = 1 — 2 sin 2 α

cos 4 x = 1 — 2 sin 2 2 x

Подставим значения и преобразуем уравнение:

2 sin 2 2 x + 5 sin 2 x + 2 = 0

Заменим sin 2 x на t. Зная, что ОДЗ для синуса sin 2 x ∈ [ — 1 ; 1 ] , можно записать:

2 t 2 + 5 t + 2 = 0

Заметим, что t 1 является посторонним, так как не соответствует условию. Путем обратной замены получим:

sin 2 x = — 1 2 ⇒ x 1 = — π 12 + π n , x 2 = — 5 π 12 + π n , n ∈ ℤ .

Примеры решения задач с пояснениями

Найти корни уравнения:

tg x + 3 ctg x + 4 = 0

При tg x · ctg x = 1 имеем, что:

Заменим tg x на t. Зная, что ОДЗ тангенса tg x ∈ ℝ , запишем:

t + 3 t + 4 = 0 ⇒ t 2 + 4 t + 3 t = 0

Вспомним, что дробь может обладать нулевым значением при нулевом числителе и знаменателе, отличном от нуля. В результате:

Путем обратной замены получим:

Ответ: x = — arctg 3 + π n , x = — π 4 + π n , n ∈ ℤ .

Решить тригонометрическое уравнение на интервале ( — π ; π ) :

2 sin 2 x + 2 sin x — 2 = 0

Заменим sin x на t. В результате уравнение преобразуется:

2 t 2 + 2 t — 2 = 0

Определим дискриминант уравнения:

Таким образом, корни равны:

Исходя из того, что t = sin x ∈ [ — 1 ; 1 ] , можно сделать вывод о лишнем корне t 2 . В результате:

sin x = 2 2 ⇔ x = π 4 + 2 π n

x = 3 π 4 + 2 π m , n , m ∈ ℤ .

Выполним проверку корней на соответствие условиям задания:

— π π 4 + 2 π n π ⇔ — 5 8 n 3 8 ⇒ n = 0 ⇒ x = π 4 .

— π 3 π 4 + 2 π m π ⇔ — 7 8 m 1 8 ⇒ m = 0 ⇒ x = 3 π 4 .

Ответ: корни уравнения π 4 + 2 π n ; 3 π 4 + 2 π m ; n , m ∈ ℤ , из них соответствуют интервалу π 4 ; 3 π 4 .

Дано тригонометрическое уравнение, которое нужно решить на отрезке ( 0 ; π ) :

2 sin 2 x + 2 = 5 sin x

Заметим, что область допустимых значений определяет х как произвольное число. Перенесем члены в левую часть:

2 sin 2 x + 2 — 5 sin x = 0

Данное уравнение является квадратным по отношению к sin x . Заменим sin x на t. Тогда уравнение будет преобразовано таким образом:

2 t 2 — 5 t + 2 = 0

Исходя из того, что sin x ≤ 1 , sin x = 2 является лишним корнем. Таким образом:

Решениями sin x = a являются:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате, корнями уравнения sin x = 0 , 5 являются:

x = 5 π 6 + 2 π k

Определим, какие корни соответствуют интервалу:

0 π 6 + 2 π k π ⇔ — π 6 2 π k 5 π 6 ⇔ — 1 12 k 5 12

Заметим, что k ∈ ℤ . В таком случае из этих корней подходящими являются лишь те, что соответствуют условию k = 0:

Рассмотрим другие решения:

0 5 π 6 + 2 π k π ⇔ — 5 π 6 2 π k π 6 ⇔ — 5 12 k 1 12

Заметим, что k ∈ ℤ . В таком случае выберем решение при k = 0:

Ответ: корни уравнения π 6 + 2 π k , 5 π 6 + 2 π k , при k ∈ ℤ ; решения, соответствующие интервалу π 6 , 5 π 6 .

Решить уравнение на промежутке [ π ; 3 π ) :

ctg 2 x + 1 cos x — 11 π 2 — 1 = 0

Вспомним формулу приведения:

cos x — 11 π 2 = — sin x

Также пригодится формула:

ctg 2 x + 1 = 1 sin 2 x

1 sin 2 x — 1 — 1 sin x — 1 = 0 ⇔ 1 sin 2 x — 1 sin x — 2 = 0

Заменим 1 sin x на t. В результате:

Путем обратной замены получим:

sin x = — 1 ⇔ x = — π 2 + 2 π n , n ∈ ℤ sin x = 1 2 ⇔ x = π 6 + 2 π k ; x = 5 π 6 + 2 π m , k , m ∈ ℤ .

Определим подходящие решения:

Ответ: корни уравнения — π 2 + 2 π n ; π 6 + 2 π k ; 5 π 6 + 2 π m ; n , k , m ∈ ℤ , из них соответствуют интервалу 3 π 2 ; 13 π 6 ; 17 π 6 .

Определить корни уравнения на отрезке ( π ; 2 π ) :

cos ( 2 x ) + 3 2 sin x = 3

Область допустимых значений предусматривает произвольные значения для х. На первом этапе следует преобразовать уравнение с помощью формулы косинуса двойного угла и перенести члены уравнения в левую сторону:

1 — 2 sin 2 x + 3 2 sin x — 3 = 0 ⇔ 2 sin 2 x — 3 2 sin x + 2 = 0

Заметим, что в результате получено уравнение, которое является квадратным по отношению к sin x . Заменим sin x на t. В результате:

2 t 2 — 3 2 t + 2 = 0

t 1 , 2 = 3 2 ± 2 4

Исходя из того, что sin x ≤ 1 , делаем вывод о лишнем корне sin x = 2 . В результате:

Решения для уравнения sin x = a следующие:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате получим следующие решения для sin x = 2 2 :

x = 3 π 4 + 2 π k

Определим подходящие корни:

π π 4 + 2 π k 2 π ⇔ 3 π 4 2 π k 7 π 4 ⇔ 3 8 k 7 8

Заметим, что k ∈ ℤ . Тогда указанные корни не соответствуют интервалу ( π ; 2 π ) .

Определим корни, которые подходят к задаче:

π 3 π 4 + 2 π k 2 π ⇔ π 4 2 π k 5 π 4 ⇔ 1 8 k 5 8

Зная, что k ∈ ℤ , можно сделать вывод об отсутствии корней, которые соответствуют интервалу ( π ; 2 π ) .

Ответ: корни уравнения π 4 + 2 π k , 3 π 4 + 2 π k , где k ∈ ℤ , решения, соответствующие интервалу, отсутствуют.

Требуется найти решения тригонометрического уравнения:

3 tg 4 2 x — 10 tg 2 2 x + 3 = 0

Корни нужно записать в соответствии с интервалом — π 4 ; π 4

Область допустимых значений в данном случае:

Заменим tg 2 2 x на t, при t ⩾ 0 . Уравнение будет преобразовано таким образом:

3 t 2 — 10 t + 3 = 0

Путем обратной замены получим:

Можно сделать вывод о выполнении условия относительно области допустимых значений при найденных значениях х . Тогда остается отобрать нужные корни:

— π 4 π 6 + π 2 n 1 π 4 ⇒ — 5 6 n 1 1 6 ⇒ n 1 = 0 ⇒ x = π 6

Вычислим еще три решения, которые включены в заданный интервал:

x = — π 12 ; — π 6 ; π 12 .

Ответ: корнями уравнения являются ± π 6 + π 2 n , ± π 12 + π 2 m , n , m ∈ ℤ , из них соответствуют промежутку — π 6 ; — π 12 ; π 12 ; π 6 .

«Решение тригонометрических уравнений, сводящихся к квадратным». 11-й класс

Класс: 11

Презентация к уроку

Цели и задачи урока.

  • Образовательные:
    • повторить: определение и способы решения простейших тригонометрических уравнений; определение квадратного уравнения, формулы дискриминанта и корней квадратного уравнения
    • сформировать знания об отличительных признаках и способах решения тригонометрических уравнений, сводящихся к квадратным.
    • уметь: выделять среди тригонометрических уравнений тригонометрические уравнения, сводящиеся к квадратным и решать их.
  • Развивающие:
    • развивать логическое мышление учащихся, память, внимание, речь; умения рассуждать и выделять главное; умение самостоятельно приобретать знания и применять их на практике, развивать навыки самоконтроля и взаимоконтроля.
  • Воспитательные:
    • воспитывать уважительное отношение к одноклассникам, самостоятельность, ответственность, эстетический вкус, аккуратность, интерес к математике.

Оборудование: мультимедийный проектор, экран, лист самооценки.

Организационные формы общения: фронтальная, групповая, индивидуальная.

Тип урока: усвоения новых знаний.

Образовательные технологии: ИКТ, проектная.

План урока.

  1. Организационный момент, формирование мотивации работы учащихся.
  2. Формулирование темы, цели урока.
  3. Актуализация знаний и подготовка учащихся к активному и сознательному усвоению нового материала.
  4. Этап усвоения новых знаний и способов действий.
  5. Этап активной релаксации и активизации.
  6. Этап первичной проверки понимания изученного.
  7. Этап рефлексии и оценивания. Подведение итогов урока.
  8. Этап информирования учащихся о домашнем задании, инструктаж по его выполнению.

Подготовительная работа

Учащихся класса необходимо заранее поделить на группы. Принцип деления учащихся на группы учитель вправе выбрать самостоятельно.
Один из вариантов – группы, в которые вошли бы учащиеся с разным уровнем математической подготовки: от «базового» до «продвинутого».
Каждая группа предварительно получает задание изучить алгоритм решения одного из типов тригонометрических уравнений (используются предложенные учителем источники информации и самостоятельно найденные). Результаты своей работы члены каждой группы представляют на одном из уроков по теме «Тригонометрические уравнения». В зависимости от объёма предлагаемого материала и его сложности одном уроке могут успеть выступить 1-2 группы, представив результаты своей работы.
Предлагаем вашему вниманию урок, на котором рассматривается решение тригонометрических уравнений, сводящихся к квадратным.

Из дома реальности легко забрести в лес математики, но лишь немногие способны вернуться обратно.

Чем больше человек будет становиться человеком, тем меньше он согласится на что-либо иное, кроме бесконечного и неистребимого движения к новому.

1. Организационный момент, формирование мотивации работы учащихся (3 мин.)

Приветствие. Фиксация отсутствующих, проверка готовности учащихся к уроку. Далее каждому ученику выдаётся оценочный лист. Учитель кратко комментирует правила заполнения оценочного листа и предлагает заполнить 1-3 строки. Приложение 1.
Организация внимания учащихся: учитель цитирует учащимся Пьера Шардена, предлагает пояснить, как они поняли смысл слов (можно выслушать 2-3 человека), предлагает сделать слова девизом урока и интересуется, знают ли они, кто является их автором. Краткая историческая справка (Слайд 3).

*Инструкция по использованию ПрезентацииПриложение 2.

2. Формулирование темы, цели урока (2-3 мин.).

Учитель просит сформулировать тему предыдущего урока (Решение простейших тригонометрических уравнений). Интересуется у учащихся, как они думают, существуют ли другие типы тригонометрических уравнений? (Да. Если есть «простейшие», то значит, есть более сложные, иначе нет необходимости вводить термин «простейшие», если это единственный тип тригонометрических уравнений). Исходя из выше сказанного, предлагает сформулировать тему сегодняшнего урока (Решение сложных/других/различных типов тригонометрических уравнений).
После корректировки темы, предлагает учащимся записать в их тетрадях: дату проведения урока, фразу «Классная работа» и тему урока «Решение различных типов тригонометрических уравнений: уравнения, сводящиеся к квадратным».
На столе у каждого из учащихся находятся шаблоны яблок и фломастеры. Предлагается написать на «яблоках» свои ожидания от предстоящего урока, тему которого уже сформулировали. После этого все шаблоны яблок прикрепляются, например, с помощью скотча на заранее приготовленный плакат с изображением дерева. Получается «Дерево ожиданий».

По мере достижения того или иного ожидания соответствующее яблоко можно считать созревшим и собирать в корзину. Использование этого активного метода обучения – наглядный способ отслеживания продвижения учащихся на уроке. [1]

Возможен другой вариант: учитель ставит песочные часы перед учениками класса и предлагает ответить на вопрос о том, чему они хотят научиться на уроке, тема которого уже сформулирована (достаточно 1-2 варианта).

3. Актуализация знаний и подготовка учащихся к активному и сознательному усвоению нового материала (10 мин.).

Учитель. Герберт Спенсер говорил, что если знания человека в беспорядочном состоянии, то чем больше их у него, тем сильнее расстраивается его мышление. Последуем совету этого известного британского философа (информация для общего развития личности – краткая историческая справка. (Слайд 5) Прежде чем перейти к изучению нового материала, давайте вспомним, что мы знаем из раздела «Тригонометрия».

Фронтальная работа (устно)


– Дайте определение тригонометрического уравнения.
– Сколько корней может иметь тригонометрическое уравнение?
– Что такое простейшие тригонометрические уравнения?
– Что значит решить простейшее тригонометрическое уравнение?
– Какие способы решения тригонометрических уравнений вы знаете? (2 варианта: формулы; единичная окружность).

а) Заполните таблицу:

б) Поставьте в соответствие уравнениям их решения, представленные на единичных окружностях (с комментарием)

С последующей взаимопроверкой/самопроверкой (правильность ответов проверяется с помощью презентации) на умение решать простейшие тригонометрические уравнения. Демонстрируется (Слайд 12). При необходимости решения некоторых уравнений коротко комментируются.

4. Этап усвоения новых знаний и способов действий (15 мин.).

Учащиеся класса предварительно были поделены на группы, каждая из которых самостоятельно рассмотрела, используя материал рекомендуемый учителем и найденный самостоятельно, один из типов тригонометрических уравнений.
Результаты работы оформляются в виде некой рекомендации/алгоритма/схемы решения в формате презентации Power Point. Учитель в случае необходимости консультирует учащихся групп и предварительно проверяет итоговый продукт их работы.
Для презентации результатов того или иного способа решения на уроке выбирается один из представителей группы, остальные на уроке помогают отвечать на возникающие вопросы по решению данного типа тригонометрического уравнения. Учащиеся заранее знакомятся с критериями оценивания своей работы в группе.

Мне приходится делить время
между политикой и уравнениями.
Однако уравнения, по-моему, гораздо важней.
Политика существует только для данного момента,
а уравнения будут существовать вечно.

Возможные варианты выполнения задания группой. (Слайды 14-18)

1 группа. Решение тригонометрических уравнений, сводящихся к квадратным.

Отличительные признаки уравнений, сводящихся к квадратным:

1. В уравнении присутствуют тригонометрические функции от одного аргумента или они легко сводятся к одному аргументу.
2. В уравнении присутствует только одна тригонометрическая функция или все функции можно свести к одной.

Алгоритм решения:

– Используются ниже приведённые тождества; с их помощью необходимо выразить одну тригонометрическую функцию через другую:

– Выполняется подстановка.
– Выполняется преобразование выражения.
– Вводится обозначение (например, sinx = y).
– Решается квадратное уравнение.
– Подставляется значение обозначенной величины, и решается тригонометрическое уравнение.

Пример 1

6cos 2 x + 5 sin x – 7 = 0.

Пример 2

Пример 3

5. Этап активной релаксации и активизации (2 мин.).

Авторы метода: С. Казаков, Ю. Долинова. Приложение 4 (текст), слайды 20-25.

6. Этап первичной проверки понимания изученного (8 мин.)

Самостоятельная работа (Приложение 5)

Работа дифференцированная, каждый уровень сложности заданий представлен в двух вариантах.
I уровень – «3», II уровень – «4», III уровень – «5» в случае полного правильного решения. Работа будет проверена учителем к следующему уроку, отметки будут выставлены за урок.

7. Этап рефлексии и оценивания. Подведение итогов урока (2 мин.).

8. Этап информирования учащихся о домашнем задании, инструктаж по его выполнению (2 мин.).

Дифференцированное (раздаётся каждому ученику на отдельных листах) – Приложение 6

Список литературы:

  1. Корнилов С.В., Корнилова Л.Э. Методический ларец. – Петрозаводск: ПетроПресс, 2002. – 12 с.


источники:

http://wika.tutoronline.ru/algebra/class/10/kak-reshat-trigonometricheskie-uravneniya-svodyashhiesya-k-kvadratnym—primery

http://urok.1sept.ru/articles/629673