Преобразование уравнения к линейному виду

Элементарные преобразования системы линейных уравнений.

Алгебра и теория чисел

Лекция 3

Системы линейных уравнений

План

1. Основные понятия и обозначения.

2. Элементарные преобразования системы линейных уравнений.

3. Ступенчатая матрица. Приведение матрицы к ступенчатому виду.

Литература

1. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997, с. 25-48.

2. Ермаков В.И. Общий курс высшей математики. М.: Инфра — М, 2000. с. 5-22

3. Кремер Н.Ш. Высшая математика для экономистов. М.: Юнити, 2000. с. 38-56.

1. Основные понятия и обозначения. Простейшие системы двух линейных уравнений с двумя неизвестными изучаются в средней школе:

Известно, что справедлив один из следующих трех случаев: либо система имет одно решение, либо имеет бесконечно много решений, либо не имеет решений. В этом параграфе мы будем рассматривать общие системы линейных уравнений и установим это утверждение в общем случае кроме того изложим один из наиболее удобных методов решения систем линейных уравнений — метод последовательного исключения неизвестных или метод Гаусса по имени выдающегося немецкого математика К. Ф. Гаусса (1777-1855).

Определение 1.Системой m линейных уравнений с n неизвестными

(1)

где a11 ,a12 . amn — фиксированные числа (действительные, комплексные или принадлежащие некоторому полю) , называемые коэффициентами при неизвестных, b1 ,b2 . bm — фиксированные числа, называемые свободными членами.

Если все свободные члены в системе линейных уравнений равны нулю, то система линейных уравнений называется однородной.

Определение 2.Решением системы линейных уравнений (1) называется такой упорядоченный набор n чисел , при подстановке которыхв каждое из уравнений системы вместо соответственно неизвестных x1 , x2 . xn каждое из уравнений системы превращается в истинное числовое равенство.

Система называется совместной, если она имеет хотя бы одно решение, и называется несовместной, если она не имеет решений. Совместная система называется определенной, если она имеет одно решение, и называется неопределенной, если она не имеет решений.

Пусть S1 , S2 системы линейных уравнений с одним и тем же числом неизвестных, X1 , X2 — множества их решений соответственно.

Определение 3.Говорят, что система линейных уравнений S2 следствие системы S1 и S2 , если каждое решение системы S1 является решением системы S2 ,т.е. . Обозначаем .

Определение 4. Говорят, что системы S1 и S2 равносильны, если каждое решение системы S1 является решением системы S2 и каждое решение системы S2 является решением системы S1 , т.е. . Обозначаем .

Отношение следования и равносильности обладают следующими свойствами.

1. Если и , то (транзитивность).

Действительно, если и , то по определению 3 и Отсюда по свойству включения и по определению .

2. (рефлексивность).

3. Если , то — (симметричность).

4. Если и , то — (транзитивность).

Свойства 2, 3, 4 доказываются аналогично.

Элементарные преобразования системы линейных уравнений.

Определение 5. Элементарными преобразованиями системы линейных уравнений называются ее следующие преобразования:

1) перестановка любых двух уравнений местами;

2) умножение обеих частей одного уравнения на любое число ;

3) прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число k ;

(при этом все остальные уравнения остаются неизменными).

Нулевым уравнением называем уравнение следующего вида:

.

Теорема 1. Любая конечная последовательность элементарных преобразований и преобразование вычеркивание нулевого уравнения переводит одну систему линейных уравнений в равносильную ей другую систему линейных уравнений.

Доказательство.В силу свойства 4 предыдущего пункта достаточно доказать теорему для каждого преобразования отдельно.

1. При перестановке уравнений в системе местами сами уравнения неизменяются, поэтому по определению полученная система равносильная первоначальной .

2. В силу первой части доказательства достаточно доказать утверждение для первого уравнения. Умножим первое уравнение системы (1) на число , получим систему

(2)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (2) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеет место верное числовое равенство:

. (3)

Умножая его на число k,получим верное числовое равенство:

, (4)

т.о. устанавливаем, что решение системы (2).

Обратно, если решение системы (2), то числа удовлетворяют всем уравнениям системы (2). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (2), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (2), то справедливо числовое равенство (4). Разделив обе его части на число ,получим числовое равенство (3) и доказываем, что решение системы (1).

Отсюда по определению 4 система (1) равносильна системе (2).

3. В силу первой части доказательства достаточно доказать утверждение для первого и второго уравнения системы . Прибавим к обеим частям первому уравнению системы соответствующие части второго умноженные на число k , получим систему

(5)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (5) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеют место верные числовые равенства:

, (6)

. (7)

Прибавляя почленно к первому равенству второе, умноженное на число k получим верное числовое равенство:

. (8)

Обратно, если решение системы (5), то числа удовлетворяют всем уравнениям системы (5). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (5), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (5), то справедливо числовое равенство (8). Вычитая из обеих его частей соответствующие части равенства (7) умноженные на число k получим числовое равенство (6).

Отсюда по определению 4 система (1) равносильна системе (5).

4. Так как нулевому уравнению удовлетворяет любой упорядоченный набор из n чисел, то при вычеркивании нулевого уравнения в системе получим систему равносильную исходной.

Ступенчатая матрица.

Определение 6.Матрицей размерности называется прямоугольная таблица

содержащая mn чисел, расположенных в m строк и n столбцов, числа называются элементами матрицы. Если , то матрица называется квадратной матрицей порядка m . Если все элементы матрицы равны нулю, то матрица называется нулевой матрицей. Элементы aii называются элементами главной диагонали.

Определение 7. Матрицей ступенчатого вида называется такая матрица, которая обладает свойствами:

1) в каждой строке матрицы имеется неравный нулю элемент;

2) в каждой строке матрицы, начиная со второй, первый слева неравный нулю элемент расположен правее первого слева неравного нулю элемента предыдущей строки матрицы.

Матрицу ступенчатого вида называют также трапециидальной матрицей, а квадратную матрицу ступенчатого вида называют треугольной матрицей. Ниже показаны две не ступенчатые матрицы и три ступенчатые матрицы (последняя матрица треугольная).

, , , , .

Определение 8. Элементарными преобразованиями строк матрицы называются следующие ее преобразования:

1) перестановка любых двух строк матрицы местами;

2) умножение одной строки матрицы на любое число ;

3) прибавление к одной строке матрицы другой ее строки умноженной на любое число k ;

(при этом все остальные строки матрицы остаются неизменными).

Аналогично можно рассматривать элементарные преобразования столбцов матрицы.

Теорема 2. Любую ненулевую матрицу конечным числом элементарных преобразований и преобразований вычеркивания нулевой строки можно привести к матрице ступенчатого вида.

Доказательство.Доказательство проводим методом математической индукции по числу m строк матрицы. Для m=1 утверждение теоремы справедливо, так как ненулевая однострочная матрица по определению имеет ступенчатый вид.

Предположим, что утверждение теоремы доказано для матриц, имеющих m-1 строку и докажем его для матриц, в которых содержится m строк. Пусть первый слева отличный от нуля столбец данной матрицы имеет номер k , так как матрица ненулевая, то такой столбец найдется, и матрица имеет вид:

.

Можем считать, что элемент , в противном случае строки матрицы можно переставить. Прибавим ко второй строке матрицы первую, умноженную на число , к третьей — первую , умноженную на и т.д. , к m-й — первую, умноженную на . После этих преобразований матрица примет вид:

. (9)

Рассмотрим матрицу, состоящую из последних m-1 строк матрицы (9):

. 10)

Если матрица (10) нулевая, то все строки в матрице (9) кроме первой нулевые. Вычеркивая их, приходим к матрице ступенчатого вида. Если матрица (10) ненулевая, то по индуктивному предположению конечным число элементарных преобразований и преобразований вычеркивания нулевой строки может быть приведена к матрице ступенчатого вида: ,

где элементы и не равны нулю. Тогда соответствующими преобразованиями строк матрица (9) преобразуется в матрицу ступенчатого вида:

; (11)

элементы , . не равны нулю. Теорема доказана.

4. Метод Гаусса. Системе линейных уравнений (1) соответствуют три матриц

, .

Первая матрица называется матрицей системы, вторая — расширенной или присойдиненной матрицей системы, третья — столбцом свободных членов.

Система линейных уравнений называется системой ступенчатого вида, если расширенная матрица системы есть матрица ступенчатого вида. Неизвестные с коэффициентами неравными нулю, которые стоят первыми в уравнениях системы ступенчатого вида называются главными неизвестными, а остальные неизвестные называются свободными.

Линейное уравнение, в котором все коэффициенты равны нулю, а свободный член не равен нулю, т.е. уравнение вида:

,

не имеет решений. Действительно, если — решение этого уравнения, то получим противоречие с условием. Такое уравнение называем противоречивым.

Пусть не все уравнения системы (1) нулевые. Тогда и расширенная матрица системы (1) ненулевая. По теореме 2 ее можно конечным числом элементарных преобразований и преобразований выбрасывания нулевой строки можно привести к матрице ступенчатого вида. Полученной матрице соответствует система линейных уравнений ступенчатого вида. Этим преобразованиям расширенной матрицы системы (1) соответствуют такие же преобразования системы линейных уравнений (1). По теореме 1 они переводят систему (1) в равносильную систему линейных уравнений, которая будет являются системой ступенчатого вида.

Таким образом мы доказали первую часть следующей теоремы.

Теорема 3.Любую систему линейных уравнений , содержащую ненулевое уравнение конечным числом элементарных преобразований и преобразований вычеркивания нулевого уравнения можно привести к равносильной ей системе ступенчатого вида. При этом возможны следующие три случая.

1. Если в полученной системе линейных уравнений ступенчатого вида есть противоречивое уравнение, то данная система не имеет решений.

2. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе равно числу неизвестных, то данная система имеет единственное решение.

3. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе меньше числа неизвестных, то данная система имеет бесконечно много решение.

Доказательство.Пусть дана система (1), содержащая ненулевое уравнение. По выше доказанному, она конечным числом элементарных преобразований она может быть преобразована к равносильной ей системе уравнений ступенчатого вида. Возможны случаи.

В полученной системе ступенчатого вида есть противоречивое уравнение. Тогда ни один набор чисел не удовлетворяет системе, и система (1) не имеет решений.

В полученной системе ступенчатого вида нет противоречивого уравнения. Тогда в каждом из уравнений системы ступенчатого вида содержится главное неизвестное. Отсюда получаем, что число главных неизвестных, а тем более число всех неизвестных, не менее числа уравнений в системе ступенчатого вида. Тогда возможны под случаи:

В системе ступенчатого вида число уравнений равно числу неизвестных, т. е. система имеет вид:

(12)

где Все неизвестные в системе являются главными. Из последнего уравнения находим единственное значение для неизвестного : . Подставляя найденное значение в предпоследнее уравнение, находим для неизвестного единственное значение и т.д. Наконец из первого уравнения по найденным значениям неизвестных из первого уравнения находим единственное значение неизвестного . Таким образом, система (12), а поэтому и система (1) имеет единственное решение.

В системе ступенчатого вида число уравнений меньше числа неизвестных. В этом случае матрица полученной системы имеет вид (11), а

систему можно записать в виде:

(13)

где В этой системе r главных неизвестных , все остальные свободные (в системе они обзначены точками. Возьмем для свободных неизвестных произвольные значения. Тогда значения главных неизвестных найдутся однозначно из системы (13). Так как главные неизвестные можно выбрать бесконечным числом способов, то получим, что система (13), а поэтому и система (1) имеет бесконечно много решений.

Следствие.Если в системе однородных уравнений число неизвестных больше числа уравнений, то система имеет бесконечно много решений.

Действительно, система однородных уравнений всегда имеет нулевое решение , и при приведении ее к ступенчатому виду всегда получим систему, в которой число неизвестных больше числа уравнений.

Метод исследования и решения систем линейных уравнений, изложенный в доказательстве теорем 3 называется методом Гаусса.

Пример 1.Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

.

Составим по полученной матрице ступенчатого вида систему линейных уравнений ступенчатого вида:

В полученной системе число уравнений равно числу неизвестных и полученная система имеет единственное решение, которое двигаясь вверх последовательно находим:

Решение системы .

Пример 2.Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

Соответствующая система имеет противоречивое уравнение. Поэтому данная система не имеет решений.

Методика введения решения линейных уравнений и уравнений, сводящихся к линейным

Разделы: Математика

Изучение уравнений в среднем звене начинается с введения решения линейных уравнений и уравнений, сводящихся к линейным.

Равенство двух функций, рассматриваемых в общей области определения, называется уравнением. Переменные, входящие в уравнение, обозначаются латинскими буквами x, y,z, t … Уравнение с одной переменной х в общем, виде записывается так f(x)= g(x).

Всякое значение переменной, при котором выражения f(x) и g(x) принимают равные числовые значения, называется корнем уравнения.

Решить уравнение – это, значит, найти все его корни или доказать, что их нет.

Например, уравнение 3+x=7 имеет единственный корень 4, так как при этом и только при этом значении переменной 3+x=7 верное равенство.

Уравнение (x-1)(x-2)=0 имеет 2 корня 1 и 2.

Уравнение x 2 +1=0 не имеет действительных корней, так как сумма двух положительных чисел не равняется 0.

Для того, чтобы решить любое уравнение с одной переменной, учащийся должен знать: во-первых, правила, формулы или алгоритмы решения уравнений данного вида и, во-вторых, правила выполнения тождественных и равносильных преобразований, с помощью которых данное уравнение можно привести к простейшим.

Таким образом, решение каждого уравнения складывается из двух основных частей:

  1. преобразования данного уравнения к простейшим;
  2. решения простейших уравнений по известным правилам, формулам или алгоритмам.

Если вторая часть является алгоритмической, то первая часть — в значительной степени — эвристической, что и представляет наибольшую трудность для учащихся. В процессе решения уравнения его стараются заменить более простым, поэтому важно знать с помощью каких преобразований это возможно. Здесь необходимо в доступной для ребенка форме дать понятие равносильности.

Уравнения, имеющие одни и теже корни, называются равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.

Например, уравнения x+2=5 и x+5=8 равносильны, так как каждое из них имеет единственный корень — число 3.Равносильны и уравнения x 2 +1=0 и 2x 2 +5=0 — ни одно из них не имеет корней.

Уравнения х-5=1 и х 2 =36 не равносильны, так как первое имеет только один корень х=6, тогда как второе имеет два корня 6 и –6.

К равносильным преобразованиям относятся:

1) Если к обеим частям уравнения прибавить одно и тоже число или одно и тоже целое алгебраическое выражение, содержащее неизвестное, то новое уравнение будет равносильно данному.

2) Если обе части уравнения умножить или разделить на одно и тоже отличное от нуля число, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению x 2 – 1 = 6x

3) Если в уравнении произвести раскрытие скобок и привести подобные слагаемые, то получится уравнения, равносильно данному.

Обучение решения уравнений начинается с простейших линейных уравнений и уравнений сводящихся к ним. Дается определение линейного уравнения и рассматриваются случаи, когда оно имеет одно решение; не имеет решений и имеет бесконечное множество решений.

Линейным уравнением с одной переменной х называют уравнение вида ах = b, где а и b — действительные числа, а — называют коэффициентом при переменной, b — свободным членом.

Для линейного уравнения ах = b могут представиться при случае:

  1. а 0, в этом случае корень уравнения равен b/a
  2. а = 0; b = 0; в этом случае уравнение принимает вид 0х = b, что верно при любом х, т.е. корнем уравнения служит любое действительное число;
  3. а = 0; b 0; в том случае уравнение принимает вид 0х = b, оно не имеет корней.

Многие уравнения в результате преобразований сводятся к линейным.

Так в 7 классе можно применить следующие уравнения:

1)

Это уравнение сводиться к линейному уравнению.

Умножением обеих частей на 12 (наименьшее общее краткое знаменателей 3, 4, 6, 12), получим:

8 + 3x + 2 – 2x = 5x –12,

8 + 2 + 12 = 5x – 3x + 2x,

2) Покажем, что уравнение 2 (х + 1) – 1 = 3 — (1 — 2х) не имеет корней.

Упростим обе части уравнения:

2х + 2 – 1 = 3 – 1 + 2х,

Это уравнение не имеет корней, т.к. левая часть 0 х равна 0 при любом х, а значит не равна 1.

3) Покажем, что уравнение 3(1 – x) + 2 = 5 – 3x имеет бесконечное множество корней.

При прохождении темы “линейные уравнения с двумя переменными” можно предложить учащимся графический способ решения уравнения. Данный метод основан на пользовании графиков функций, входящих в уравнение. Суть метода: найти абсциссы точек пересечения графиков функций, стоящих в левой и правой частях уравнения. Основывается на выполнение следующих действий:

1) Преобразовать исходное уравнение к виду f(x) = g(x), где f(x) и g(x) функции, графики, которых можно построить.
2) Построить графики функций f(x) и g(x)
3) Определить точки пересечения построенных графиков.
4) Определить абсциссы найденных точек. Они и дадут множество решений исходного уравнения.
5) Записать ответ.

Преимущество данного метода заключается в том, что он позволяет легко определить число корней уравнения. Недостаток в том, что корни в общем случае определяются приближенно.

Следующим этапом в изучении линейных уравнений, являются уравнения с модулями, причем некоторые решения выполняются несколькими способами.

Решение уравнений, содержащих знак модуля и уравнений с параметрами можно назвать деятельностью, близкой к исследовательской. Это обусловлено тем, что выбор метода решения, процесс решения, запись ответа предполагают определенный уровень сформированности умений наблюдать, сравнивать, анализировать, выдвигать и проверять гипотезу, обобщать полученные результаты.

Особой интерес представляют уравнения, содержащие знак модуля.

По определению модуля числа a, имеем:

Число –a может быть отрицательным при a>0; -a положительным при a -1, тогда

,

Видим, что число 0 принадлежит промежутку. Значит, является корнем. Таким образом, уравнение имеет два корня: 0 и -4.

На простых примерах рассмотрим алгоритм решения уравнений с параметрами: область допустимых значений, область определения, общие решения, контрольные значения параметров, типы частных уравнений. Способы их нахождения будут устанавливаться в каждом виде уравнений отдельно.

На базе введенных понятий определим общую схему решения всякого уравнения F(a;x)=0 с параметром а (для случая двух параметров схема аналогична):

  • устанавливаются область допустимых значений параметра и область определения;
  • определяются контрольные значения параметра, разбивающие область допустимых значений параметра на области однотипности частных уравнений;
  • для контрольных значений параметра соответствующие частные уравнения исследуются отдельно;
  • находятся общие решения x=f1 (a),…, fk (a) уравнения F(a;x)=0 на соответствующих множествах Аf1,…, Аfk значений параметра;
  • составляется модель общих решений, контрольных значений параметра;
  • на модели выделяются промежутки значений параметра с одинаковыми общими решениями (области однотипности);
  • для контрольных значений параметра и выделенных областей однотипности записываются характеристики всех типов частных уравнений
  • Особое место в алгебре отводится линейным уравнениям с параметрами.

Рассмотрим несколько примеров.

1.2х – 3 = m+1,

2х – 3 = + 4 m + 1,где m – неизвестный параметр.

Умножим обе части уравнения на 3, получим6х – 9 = m•х + 12m +3,

6х — m•х + 12m + 12,Вынесем общий множитель за скобки, получимх•(6-m) = 12(m+1),

, 6 – m ? 0, m ? 6.так как стоит в знаменателе дроби.Ответ: , при m 6.

Уравнение 2х – 3 + m (х/3 + 4) + 1 имеет множество решений, заданных формулой при всех значениях m, кроме 6.

2. , при m 2, x 1, n 0.

mx – n = 2x – 2 + 2n + 3xn,

mx – 2x – 3xn = — 2 + 2n +n,

mx – 2x – 3xn = 3n – 2,

x (m – 2 – 3n) = 3n – 2, при m 2, x 1, n 0.

Рассмотрим случай, где a = 0, тогда

m = 3n +2, при n 0

n = .

m = 3 • + 2,

x(4 – 2 – 3 ) = 3 • — 2,

x – любое число, кроме x = 1.

б) 3n – 2 0

0 • x = b. В этом случае уравнение не имеет решений.

2) a 0

m – 2 – 3n 0

m 2 + 3n.

x = , при x ? 1,

1,

3n – 2 m – 2 – 3n,

3n + 3n 2 – 2 + m,

6n m (n )

В этом случае уравнение решений не имеет.

Значит, при n = и m = 4, x – любое число, кроме 1; при n = 0, m = 6n

(n ), m = 3n + 2 (n ), m = 2 уравнение решений не имеет. Для всех остальных значения параметров x = .

Ответ: 1. n = , m = 4 – x ? R\.

2. n = 0, m = 6n (n ), m = 3n + 2 (n ), m = 2 – решений нет.

3. n 0, m 6n, m 3n + 2, m 2 – x = .

В дальнейшем предлагается рассмотреть решение задач методом составления линейных уравнений. Это сложный процесс, где надо уметь думать, догадываться, хорошо знать фактически материал.

В процессе решения каждой задачи надо четко размечать четыре этапа:

  1. изучение условия задачи;
  2. поиск плана решения и его составление;
  3. оформление найденного решения;
  4. критический анализ результата решения.

Теперь рассмотрим задачи, при решении которых применяются линейные уравнения.

1. Сплав меди и цинка содержит меди на 640 г. Больше, чем цинка. После того, как из сплава выделили 6/7 содержащейся в нем меди и 60% цинка, масса сплава оказалась равной 200 г. Какова была масса сплава первоначально?

Пусть в сплаве было х г. цинка, тогда меди (640 + х) г. после того, как выделили 6/7 меди и 60% цинка, осталось 1/7 меди и 40% цинка, т.е. 0,4 части. Зная, что масса сплава оказалась равной 200 г., составим уравнение.

1/7 (х + 640) + 0,4•х = 200,

х + 640 + 2,8•х =1400,

Значит, цинка было 200 г., а меди 840 г.

(200 + 640 = 840). 1) 200 + 840 = 1040 (г.) – масса сплава. Ответ: первоначальная масса сплава 1040 г.

2. Сколько литров 60% серной кислоты нужно прибавить к 10 л 30% кислоты, чтобы получить 40% раствор?

Пусть число литров 60% кислоты, которое прибавим х л, тогда раствора чистой кислоты будет л. А в 10 л 30% раствора чистой кислоты будет л. Зная, что в полученных (10 + х) смеси будет чистой кислоты л, составим уравнение.

+=,

60х + 300 = 40х + 400,

60х – 40х = 400 – 300,

Значит, нужно прибавить 5 л 60% кислоты.

При изучении темы “Решение линейных уравнений” рекомендуется некоторая историческая справка.

Задачи на решение уравнений первой степени встречаются еще в вавилонских клинописных текстах. В них же есть некоторые задачи, приводящие к квадратным и даже кубическим уравнениям (последние, по-видимому, решались с помощью подбора корней). Древнегреческие математики нашли геометрическую форму решения квадратного уравнения. В геометрической же форме арабский математик Омар Хайям (конец XI – начало XII века н. э.) исследовал кубическое уравнение, хотя и не нашел общей формулы для его решения. Решение кубического уравнения было найдено в начале XVI века в Италии. После того, как Сципиан дель Ферро решил один частный вид таких уравнений в 1535 году, итальянец Тарталья нашел общую формулу. Он доказал, что корни уравнения x 3 + px + q = 0 имеют вид x =.

Это выражение обычно называют формулой Кардано, по имени ученого, узнавшего ее от Тартальи и опубликовавшего в 1545 году в своей книге “Великое искусство алгебраических правил”. Ученик Кардано – молодой математик Феррари решил общее уравнение четвертой степени. После этого на протяжении двух с половиной столетий продолжались поиски формулы для решения уравнений пятой степени. В 1823 году замечательный норвежский математик Нильс Хендрик Абель (1802-1829) доказал, что такой формулы не существует. Точнее говоря, он доказал, что корни общего уравнения пятой степени нельзя выразить через его коэффициенты с помощью арифметических действий и операций извлечения корня. Глубокое исследование вопроса об условиях разрешимости уравнений в радикалах провел французский математик Эварист Галуа (1811-1832), погибший на дуэли в возрасте 21 года. Некоторые проблемы теории Галуа решил советский алгебраист И.Т.Шафаревич.

Наряду с поисками формулы для решения уравнения пятой степени велись и другие исследования в области теории алгебраических уравнений. Виета установил связь между коэффициентами уравнений и его корнями. Он доказал, что если x1,…,xn – корни уравнения x n + a1x n-1 +…+an=0, то имеют место формулы:

Литература:

  1. Журнал “Математика в школе” 6, 1999
  2. Приложение к газете “Первое сентября”- математика 20, 1999.
  3. С.И. Туманов “Алгебра”, пособие для учащихся 6-8 классов.
  4. Н.И. Александров; И. П.Ярандай “Словарь-справочник по математике”.
  5. О.Б. Епишева; В.И. Крупич “Учить школьников учиться математике”.
  6. Е.И.Ямщенко “Изучение функций”.
  7. А.И. Худобин; М.Ф. Шуршалов “Сборник задач по алгебре и элементарным функциям”.
  8. Ш. А. Алимов, В.А. Ильин “Алгебра 6-8 классы”.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.


источники:

http://urok.1sept.ru/articles/410415

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij