Преобразование выражений содержащих степени решение показательных уравнений

Решение показательных уравнений через преобразования

Продолжаем разговор про решение показательных уравнений. Среди методов решения показательных уравнений есть метод решения уравнений через преобразования. При решении показательных уравнений этим методом используются практически все известные преобразования уравнений. Среди них можно выделить преобразования, характерные именно для показательных уравнений. С этого мы и начнем эту статью – составим список характерных преобразований показательных уравнений и приведем простейшие примеры их проведения. Дальше укажем основные направления проведения преобразований, которых следует придерживаться при решении показательных уравнений через преобразования, и рассмотрим несколько примеров с решениями.

Список характерных преобразований

Замена числа степенью

Преобразование, заключающееся в замене числа степенью, в основном используется для приведения показательного уравнения a f(x) =b , a>0 , a≠1 , b>0 к виду a f(x) =a c , c – некоторое число, с целью дальнейшего его решения, например, методом уравнивания показателей. Приведем пример. Показательное уравнение 2 x =8 путем замены числа 8 степенью 2 3 преобразовывается в уравнение 2 x =2 3 , что дает возможность уравнять показатели и получить решение x=3 .

Здесь стоит особо подчеркнуть два частных случая:

  • Число 1 всегда можно заменить нулевой степенью любого положительного числа, ведь a 0 =1 для любого a>0 . Например, это преобразование позволяет осуществить переход от показательного уравнения 5 x−3 =1 к уравнению 5 x−3 =5 0 , что в дальнейшем позволяет уравнять показатели и получить решение.
  • Любое положительное число a можно рассматривать как первую степень числа a , так как a=a 1 . Например, показательное уравнение 2 x 2 −2·x =2 можно рассматривать как уравнение 2 x 2 −2·x =2 1 , что полезно в плане его решения методом уравнивания показателей.

Преобразования на базе свойств степеней

Очень характерными для показательных уравнений являются преобразования, базирующиеся на свойствах степеней. Давайте рассмотрим их.

Преобразование на базе свойств умножения и деления степеней с одинаковыми основаниями

Этим свойствам соответствуют равенства a p ·a q =a p+q и a p :a q =a p−q , a , p и q – действительные числа, причем a>0 . Первое равенство позволяет заменять произведения степеней с одинаковыми основаниями одной единственной степенью с суммой в показателе и обратно. На базе второго равенства можно частные степеней заменять одной степенью с разностью в показателе и наоборот. Рассмотрим это на примерах преобразования показательных уравнений.

Для примера возьмем показательное уравнение 2 x+1 ·2 x ·2 x−5 =2 2 . В его левой части, очевидно, находится произведение степеней с одинаковыми основаниями, которое в силу свойства умножения степеней с одинаковыми основаниями можно заменить степенью 2 x+1+x+x−5 . То есть, мы можем преобразовать показательное уравнение 2 x+1 ·2 x ·2 x−5 =2 2 к виду 2 x+1+x+x−5 =2 2 , который удобен для дальнейшего решения.

Теперь рассмотрим уравнение . Можно выполнить преобразование этого показательного уравнения, основываясь на свойстве деления степеней с одинаковыми основаниями. Указанное свойство позволяет заменить частное в левой части уравнения степенью 5 2·x−1−(x−3) . В результате проведения такого преобразования получается уравнение 5 2·x−1−(x−3) =5 , которое легко решается через уравнивание показателей.

Наконец, возьмем показательное уравнение 2 x+1 +5·2 x−2 =13 . Для его преобразования равенства a p ·a q =a p+q и a p :a q =a p−q используются справа налево: . Дальше полученное уравнение легко преобразовывается в уравнение 2 x =2 2 , решение которого тривиально.

Преобразования на базе свойств степени произведения и частного

Указанным свойствам отвечают равенства (a·b) p =a p ·b p и (a:b) p =a p :b p , где a , p и q – действительные числа, причем a>0 , b>0 . Первое свойство позволяет заменять степень произведения произведением степеней и обратно, второе – степень частного частным степеней и обратно. Покажем, как преобразования, базирующиеся на этих свойствах степеней, используются при решении показательных уравнений.

Рассмотрим показательное уравнение 5·2 x −(2·5) x =0 . В данном случае мы имеем право провести преобразование, заключающееся в замене степени произведения (2·5) x произведением степеней 2 x ·5 x . Выполнив его, мы придем к уравнению 5·2 x −2 x ·5 x =0 , которое после вынесения за скобки общего множителя 2 x может быть решено методом разложения на множители.

Вот пример использования свойства степени произведения в обратную сторону: 2 x ·3 x =6 −2 , (2·3) x =6 −2 и дальше 6 x =6 −2 , x=−2 .

Аналогично проводится решение показательных уравнений через преобразования, базирующиеся на свойстве степени частного. Например, это преобразование позволяет перейти от показательного уравнения к уравнению , после чего вынести общий множитель 2 x за скобки и решить уравнение методом разложения на множители. А показательное уравнение следует преобразовать к виду и дальше 6 x =6 −2 , x=−2 .

Преобразование на базе свойства степени в степени

Свойству степени в степени отвечает равенство (a p ) q =a p·q , где a , p и q – действительные числа, причем a>0 . Покажем, как это свойство используется для преобразования показательных уравнений.

Обратимся к уравнению . В силу свойства степени в степени данное показательное уравнение можно преобразовать к виду 2 2·3·(x−2) =2 (−1)·(1−x) , что позволяет провести дальнейшее решение через уравнивание показателей.

Равенство (a p ) q =a p·q для преобразования показательных уравнений может применяться и справа налево. Например, преобразование показательного уравнения 3 2·x −4·3 x +3=0 к виду (3 x ) 2 −4·3 x +3=0 позволяет вести дальнейшее решение методом введения новой переменной.

Использование определения степени с отрицательным показателем

Из определения степени с отрицательным показателем следует, что , a>0 . Этот результат при необходимости используется для преобразования показательных уравнений. Рассмотрим пример.

Возьмем показательное уравнение . Видно, что в его записи содержатся две степени, основания этих степеней одинаковые, а показатели отличаются знаком. В этой ситуации опора на определение степени с отрицательным показателем позволяет заменить выражение степенью 2 x 2 −4·x . Такое преобразование приводит исходное показательное уравнение к более простому в плане решения уравнению , в котором степени уже одинаковые. Дальнейшее решение не вызывает вопросов: , , , x 2 −4·x=5 , x 2 −4·x−5=0 , последнее квадратное уравнение имеет два корня −1 и 5 . Они составляют решение исходного показательного уравнения.

Замена корней степенями

Определение степени с дробным показателем дает нам соотношение , a≥0 (в частности, ), связывающее корень со степенью. Оно дает возможность преобразовывать показательные уравнения, осуществляя замену корней степенями. Это касается как числовых выражений с корнями, так и выражений с переменными. Покажем это на примерах.

Решение показательного уравнения требует преобразования числового выражения с корнем в степень . В результате проведения такого преобразования получается показательное уравнение , решение которого находится, например, через уравнивание показателей.

Аналогично проводится преобразование показательных уравнений, в которых под знаками радикалов находятся выражения с переменными. Так с опорой на равенство мы можем преобразовать показательное уравнение к виду . Ну а дальше напрашивается преобразование по свойству степени в степени, которое мы разбирали чуть выше.

Деление обеих частей уравнения на одну и ту же степень

Решение уравнений в некоторых случаях проводится с использованием преобразования, заключающегося в делении обеих частей уравнения на одно и то же выражение. Деление обеих частей уравнения на одно и то же выражение используется и при решении показательных уравнений. В частности, ряд показательных уравнений решается через деление обеих частей уравнения на одну и ту же степень или произведение степеней. Известно, что деление обеих частей уравнения на одно и то же выражение является равносильным, если выражение, на которое производится деление, не обращается в нуль. Так как степень a f(x) не обращается в нуль ни при каких значениях переменной, то деление обеих частей уравнения на одну и ту же степень или на произведение степеней является равносильным преобразованием уравнения. Рассмотрим примеры проведения указанного преобразования при решении показательных уравнений.

В основном через деление обеих частей уравнения на одну и ту же степень решаются показательные уравнения, однородные относительно каких-либо степеней (см. однородные уравнения). Например, — однородное показательное уравнение первой степени относительно степеней 3 x и 5 x . Его решение требует деления на любую из этих степеней. Так деление на 5 x дает равносильное показательное уравнение , решение которого легко находится через ряд следующих преобразований:

Показательное уравнение является однородным уравнением второй степени относительно степеней и . Его решение можно провести через деление обеих частей уравнения на степень или . Покажем его полное решение.

Решите уравнение

Деление обеих частей уравнения на одну и ту же степень позволяет решать не только однородные показательные уравнения. Например, через деление на степень 13 3·x+1 можно решить показательное уравнение 13 5·x−1 ·17 2·x−2 =13 3·x+1 .

А вот пример решения показательного уравнения через деление его обеих частей на произведение трех степеней, находящееся в правой части:

Разложение чисел на простые множители

Довольно характерным преобразованием показательных уравнений является преобразование, состоящее в разложении чисел на простые множители. После него, как правило, следует преобразование, базирующееся на свойстве степени произведения. Проиллюстрируем сказанное примерами.

Допустим, нам потребовалось решить показательное уравнение 5·2 x −10 x =0 . Решение можно начинать с разложения составного числа 10 на простые множители 2 и 5 , то есть, переходить к уравнению 5·2 x −(2·5) x =0

. Теперь следует применить свойство степени произведения: 5·2 x −2 x ·5 x =0 . Остается вынести за скобки общий множитель 2 x и решить полученное показательное уравнение методом разложения на множители.

Вот другое характерное показательное уравнение , решение которого связано с проведение преобразования, заключающегося в разложении числа на простые множители. Разложим число 504 на простые множители:

Значит, 504=2 3 ·3 2 ·7 . Полученное разложение позволяет от исходного показательного уравнения перейти к уравнению , и дальше по свойству степени произведения — к уравнению , что то же самое . Полученное уравнение решается через деление его обеих частей на выражение, находящееся в правой части. Это уравнение мы решили в конце предыдущего пункта.

Преобразование показательных уравнений с сопряженными выражениями

Стоит отдельно выделить группу показательных уравнений, в которых основаниями степеней с одинаковыми показателями являются сопряженные выражения. Вот пример показательного уравнения , которое является типичным представителем этой группы. Для решения подобных уравнений обычно находятся произведения степеней с сопряженными выражениями в основаниях, и полученные соотношения используются для преобразования уравнений. Например, в нашем случае

То есть, . Полученное равенство позволяет преобразовать исходное уравнение к виду . После этого остается провести деление обеих частей уравнения на степень (это преобразование мы разбирали выше), что дает очень простое равносильное уравнение 27=3 x−2 .

Аналогично решается показательное уравнение . Оно в силу равенства может быть преобразовано к виду , и решено методом введения новой переменной. Вот его подробное решение.

Выделение целой части из рациональной дроби

Выделение целой части из рациональной дроби сложно назвать часто используемым преобразованием по отношению к показательным уравнениям и уж тем более типичным и характерным. Но оно бывает полезно при решении показательных уравнений. Так что воспользуемся случаем лишний раз напомнить про него.

Например, выделение целых частей из рациональных дробей в показательном уравнении позволяет ввести новую переменную. Действительно, и , что позволяет преобразовать исходное показательное уравнение в уравнение , и дальше по свойствам степеней . Остается принять или и довести решение до конца.

Направления проведения преобразований. Примеры.

Выше мы рассмотрели самые основные и характерные преобразования показательных уравнений по отдельности, а также разобрали примеры их проведения. Но на практике при решении показательных уравнений обычно приходится проводить не одно какое-то преобразование, а серию последовательных преобразований. Естественно, при этом необходимо четко понимать, для чего проводится то или иное преобразование. Сейчас мы обозначим основные направления проведения преобразований, которых следует придерживаться при решении показательных уравнений.

Можно выделить три основных направления проведения преобразований показательных уравненийM:

  • К одинаковым степеням.
  • К одинаковым основаниям степеней.
  • К одинаковым показателям степеней.

Придерживаясь указанных направлений, следует от исходного показательного уравнения продвигаться к уравнениям, для которых известен метод решения, то есть, к уравнениям a f(x) =b , a f(x) =a c , a f(x) =a g(x) , f(g(x))=0 , f1(g(x))=f2(g(x)) , f1(x)·f2(x)·…·fn(x)=0 и др. Давайте разбираться с этим на конкретных примерах.

К одинаковым степеням

Стремление к одинаковым степеням, то есть, к степеням с одинаковыми основаниями и одинаковыми показателями, при решении показательных уравнений легко объяснимо – после получения одинаковых степеней появляется возможность привести уравнение к удобному для дальнейшего решения виду, ввести новую переменную или каким-либо другим способом продвинуться в решении. Приведем примеры.

Возьмем показательное уравнение 3 x+2 +3 x+1 +3 x =39 . Очевидна возможность получить одинаковые степени 3 x . Реализовать ее позволяет свойство умножения степеней с одинаковыми основаниями. Это свойство позволяет преобразовать исходное показательное уравнение в уравнение 3 x ·3 2 +3 x ·3 1 +3 x =39 с одинаковыми степенями 3 x . Дальше степень 3 x выносится за скобки как общий множитель, и уравнение приводится к простейшему показательному уравнению 3 x =3 с очевидным решением x=1 .

Рассмотрим еще один пример. В показательном уравнении 49·7 2·x −50·7 x +1=0 тоже несложно получить одинаковые степени 7 x . Достичь этого позволяет опора на свойство степени в степени. По свойству степени в степени мы можем заменить 7 2·x выражением (7 x ) 2 , то есть, перейти к уравнению 49·(7 x ) 2 −50·7 x +1=0 . Это открывает путь к решению показательного уравнения через введение новой переменной 7 x =t .

К одинаковым основаниям

Когда нет возможности получить одинаковые степени или такая возможность не очевидна, то можно довольствоваться получением одинаковых оснований. Это тоже бывает полезно при решении показательных уравнений. Проиллюстрируем сказанное примерами.

Несложно заметить, что выражения, отвечающие частям показательного уравнения , можно преобразовать в степени с основаниями 3 . Это позволяют сделать свойства степеней и связь между корнями и степенями с дробными показателями. Действительно, так как и , то исходное показательное уравнение можно преобразовать в уравнение , которое легко решается, например, методом уравнивания показателей.

Переход к одинаковым основаниям позволяет уменьшать количество степеней с разными основаниями, что часто неплохо продвигает в решении показательных уравнений. Например, в показательном уравнении (10 x ) 2 +9·20 x −10·(2 x ) 2 =0 три степени и у всех этих степеней различные основания. Представление степени 20 x в виде 10 x ·2 x позволяет преобразовать исходное уравнение к виду (10 x ) 2 +9·10 x ·2 x −10·(2 x ) 2 =0 . При этом уменьшается количество степеней с различными основаниями с трех до двух, и получается показательное уравнение, однородное относительно степеней 10 x и 2 x , а для таких уравнений есть стандартный метод решения.

Аналогично, в показательном уравнении представление степени 504 x−2 в виде 504 x−2 =2 3·x−6 ·3 2·x−4 ·7 x−2 уменьшает количество степеней с разными основаниями, и открывает дорогу к дальнейшему решению через деление обеих частей уравнения на 2 3·x−6 ·3 2·x−4 ·7 x−2 .

К одинаковым показателям

Если нет возможности вести преобразования в сторону получения одинаковых степеней или хотя бы одинаковых оснований степеней, то стоит рассмотреть возможность продвижения к одинаковым показателям степеней. Это тоже может быть полезно в плане решения показательных уравнений. Приведем примеры.

Легко заметить, что показатели степеней в записи показательного уравнения 5 −3−x ·13 3+x =1 различаются только знаками. В подобных случаях можно переходить к одинаковым показателям. В нашем случае степень 5 −3−x можно рассматривать как , ведь в силу свойства степени в степени . Это позволяет от исходного уравнения перейти к показательному уравнению , в записи которого степени имеют одинаковые показатели, что в свою очередь позволяет с опорой на свойство степени произведения перейти к простейшему показательному уравнению , и получить искомое решение.

Давайте разберем еще один пример. Возьмем показательное уравнение 2·3 2·x =9·2 x . Здесь можно осуществить переход к степеням с одинаковыми показателями, заменив 3 2·x на 9 x . Это преобразование дает уравнение 2·9 x =9·2 x , которое через деление обеих частей на 2 x приводится к простейшему показательному уравнению . Его решением является x=1 .

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.

Степенные выражения (выражения со степенями) и их преобразование

Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 3 2 , 7 5 + 1 , ( 2 + 1 ) 5 , ( − 0 , 1 ) 4 , 2 2 3 3 , 3 · a 2 − a + a 2 , x 3 − 1 , ( a 2 ) 3 . А также степени с нулевым показателем: 5 0 , ( a + 1 ) 0 , 3 + 5 2 − 3 , 2 0 . И степени с целыми отрицательными степенями: ( 0 , 5 ) 2 + ( 0 , 5 ) — 2 2 .

Чуть сложнее работать со степенью, имеющей рациональный и иррациональный показатели: 264 1 4 — 3 · 3 · 3 1 2 , 2 3 , 5 · 2 — 2 2 — 1 , 5 , 1 a 1 4 · a 1 2 — 2 · a — 1 6 · b 1 2 , x π · x 1 — π , 2 3 3 + 5 .

В качестве показателя может выступать переменная 3 x — 54 — 7 · 3 x — 58 или логарифм x 2 · l g x − 5 · x l g x .

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Основные виды преобразований степенных выражений

В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

Вычислите значение степенного выражения 2 3 · ( 4 2 − 12 ) .

Решение

Все преобразования мы будем проводить с соблюдением порядка выполнения действий. В данном случае начнем мы с выполнения действий в скобках: заменим степень на цифровое значение и вычислим разность двух чисел. Имеем 2 3 · ( 4 2 − 12 ) = 2 3 · ( 16 − 12 ) = 2 3 · 4 .

Нам остается заменить степень 2 3 ее значением 8 и вычислить произведение 8 · 4 = 32 . Вот наш ответ.

Ответ: 2 3 · ( 4 2 − 12 ) = 32 .

Упростите выражение со степенями 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 .

Решение

Данное нам в условии задачи выражение содержит подобные слагаемые, которые мы можем привести: 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 = 5 · a 4 · b − 7 − 1 .

Ответ: 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 = 5 · a 4 · b − 7 − 1 .

Представьте выражение со степенями 9 — b 3 · π — 1 2 в виде произведения.

Решение

Представим число 9 как степень 3 2 и применим формулу сокращенного умножения:

9 — b 3 · π — 1 2 = 3 2 — b 3 · π — 1 2 = = 3 — b 3 · π — 1 3 + b 3 · π — 1

Ответ: 9 — b 3 · π — 1 2 = 3 — b 3 · π — 1 3 + b 3 · π — 1 .

А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений.

Работа с основанием и показателем степени

Степень в основании или показателе может иметь и числа, и переменные, и некоторые выражения. Например, ( 2 + 0 , 3 · 7 ) 5 − 3 , 7 и ( a · ( a + 1 ) − a 2 ) 2 · ( x + 1 ) . Работать с такими записями сложно. Намного проще заменить выражение в основании степени или выражение в показателе тождественно равным выражением.

Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.

Цель преобразований – упростить исходное выражение или получить решение задачи. Например, в примере, который мы привели выше, ( 2 + 0 , 3 · 7 ) 5 − 3 , 7 можно выполнить действия для перехода к степени 4 , 1 1 , 3 . Раскрыв скобки, мы можем привести подобные слагаемые в основании степени ( a · ( a + 1 ) − a 2 ) 2 · ( x + 1 ) и получить степенное выражение более простого вида a 2 · ( x + 1 ) .

Использование свойств степеней

Свойства степеней, записанные в виде равенств, являются одним из главных инструментов преобразования выражений со степенями. Приведем здесь основные из них, учитывая, что a и b – это любые положительные числа, а r и s — произвольные действительные числа:

  • a r · a s = a r + s ;
  • a r : a s = a r − s ;
  • ( a · b ) r = a r · b r ;
  • ( a : b ) r = a r : b r ;
  • ( a r ) s = a r · s .

В тех случаях, когда мы имеем дело с натуральными, целыми, положительными показателями степени, ограничения на числа a и b могут быть гораздо менее строгими. Так, например, если рассмотреть равенство a m · a n = a m + n , где m и n – натуральные числа, то оно будет верно для любых значений a , как положительных, так и отрицательных, а также для a = 0 .

Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.

При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».

Представьте выражение a 2 , 5 · ( a 2 ) − 3 : a − 5 , 5 в виде степени с основанием a .

Решение

Для начала используем свойство возведения в степень и преобразуем по нему второй множитель ( a 2 ) − 3 . Затем используем свойства умножения и деления степеней с одинаковым основанием:

a 2 , 5 · a − 6 : a − 5 , 5 = a 2 , 5 − 6 : a − 5 , 5 = a − 3 , 5 : a − 5 , 5 = a − 3 , 5 − ( − 5 , 5 ) = a 2 .

Ответ: a 2 , 5 · ( a 2 ) − 3 : a − 5 , 5 = a 2 .

Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.

Найти значение степенного выражения 3 1 3 · 7 1 3 · 21 2 3 .

Решение

Если мы применим равенство ( a · b ) r = a r · b r , справа налево, то получим произведение вида 3 · 7 1 3 · 21 2 3 и дальше 21 1 3 · 21 2 3 . Сложим показатели при умножении степеней с одинаковыми основаниями: 21 1 3 · 21 2 3 = 21 1 3 + 2 3 = 21 1 = 21 .

Есть еще один способ провести преобразования:

3 1 3 · 7 1 3 · 21 2 3 = 3 1 3 · 7 1 3 · ( 3 · 7 ) 2 3 = 3 1 3 · 7 1 3 · 3 2 3 · 7 2 3 = = 3 1 3 · 3 2 3 · 7 1 3 · 7 2 3 = 3 1 3 + 2 3 · 7 1 3 + 2 3 = 3 1 · 7 1 = 21

Ответ: 3 1 3 · 7 1 3 · 21 2 3 = 3 1 · 7 1 = 21

Дано степенное выражение a 1 , 5 − a 0 , 5 − 6 , введите новую переменную t = a 0 , 5 .

Решение

Представим степень a 1 , 5 как a 0 , 5 · 3 . Используем свойство степени в степени ( a r ) s = a r · s справа налево и получим ( a 0 , 5 ) 3 : a 1 , 5 − a 0 , 5 − 6 = ( a 0 , 5 ) 3 − a 0 , 5 − 6 . В полученное выражение можно без проблем вводить новую переменную t = a 0 , 5 : получаем t 3 − t − 6 .

Ответ: t 3 − t − 6 .

Преобразование дробей, содержащих степени

Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.

Упростить степенное выражение 3 · 5 2 3 · 5 1 3 — 5 — 2 3 1 + 2 · x 2 — 3 — 3 · x 2 .

Решение

Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:

3 · 5 2 3 · 5 1 3 — 5 — 2 3 1 + 2 · x 2 — 3 — 3 · x 2 = 3 · 5 2 3 · 5 1 3 — 3 · 5 2 3 · 5 — 2 3 — 2 — x 2 = = 3 · 5 2 3 + 1 3 — 3 · 5 2 3 + — 2 3 — 2 — x 2 = 3 · 5 1 — 3 · 5 0 — 2 — x 2

Поместим минус перед дробью для того, чтобы изменить знак знаменателя: 12 — 2 — x 2 = — 12 2 + x 2

Ответ: 3 · 5 2 3 · 5 1 3 — 5 — 2 3 1 + 2 · x 2 — 3 — 3 · x 2 = — 12 2 + x 2

Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Приведите дроби к новому знаменателю: а) a + 1 a 0 , 7 к знаменателю a , б) 1 x 2 3 — 2 · x 1 3 · y 1 6 + 4 · y 1 3 к знаменателю x + 8 · y 1 2 .

Решение

а) Подберем множитель, который позволит нам произвести приведение к новому знаменателю. a 0 , 7 · a 0 , 3 = a 0 , 7 + 0 , 3 = a , следовательно, в качестве дополнительного множителя мы возьмем a 0 , 3 . Область допустимых значений переменной а включает множество всех положительных действительных чисел. В этой области степень a 0 , 3 не обращается в нуль.

Выполним умножение числителя и знаменателя дроби на a 0 , 3 :

a + 1 a 0 , 7 = a + 1 · a 0 , 3 a 0 , 7 · a 0 , 3 = a + 1 · a 0 , 3 a

б) Обратим внимание на знаменатель:

x 2 3 — 2 · x 1 3 · y 1 6 + 4 · y 1 3 = = x 1 3 2 — x 1 3 · 2 · y 1 6 + 2 · y 1 6 2

Умножим это выражение на x 1 3 + 2 · y 1 6 , получим сумму кубов x 1 3 и 2 · y 1 6 , т.е. x + 8 · y 1 2 . Это наш новый знаменатель, к которому нам надо привести исходную дробь.

Так мы нашли дополнительный множитель x 1 3 + 2 · y 1 6 . На области допустимых значений переменных x и y выражение x 1 3 + 2 · y 1 6 не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:
1 x 2 3 — 2 · x 1 3 · y 1 6 + 4 · y 1 3 = = x 1 3 + 2 · y 1 6 x 1 3 + 2 · y 1 6 x 2 3 — 2 · x 1 3 · y 1 6 + 4 · y 1 3 = = x 1 3 + 2 · y 1 6 x 1 3 3 + 2 · y 1 6 3 = x 1 3 + 2 · y 1 6 x + 8 · y 1 2

Ответ: а) a + 1 a 0 , 7 = a + 1 · a 0 , 3 a , б) 1 x 2 3 — 2 · x 1 3 · y 1 6 + 4 · y 1 3 = x 1 3 + 2 · y 1 6 x + 8 · y 1 2 .

Сократите дробь: а) 30 · x 3 · ( x 0 , 5 + 1 ) · x + 2 · x 1 1 3 — 5 3 45 · x 0 , 5 + 1 2 · x + 2 · x 1 1 3 — 5 3 , б) a 1 4 — b 1 4 a 1 2 — b 1 2 .

Решение

а) Используем наибольший общий знаменатель (НОД), на который можно сократить числитель и знаменатель. Для чисел 30 и 45 это 15 . Также мы можем произвести сокращение на x 0 , 5 + 1 и на x + 2 · x 1 1 3 — 5 3 .

30 · x 3 · ( x 0 , 5 + 1 ) · x + 2 · x 1 1 3 — 5 3 45 · x 0 , 5 + 1 2 · x + 2 · x 1 1 3 — 5 3 = 2 · x 3 3 · ( x 0 , 5 + 1 )

б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:

a 1 4 — b 1 4 a 1 2 — b 1 2 = a 1 4 — b 1 4 a 1 4 2 — b 1 2 2 = = a 1 4 — b 1 4 a 1 4 + b 1 4 · a 1 4 — b 1 4 = 1 a 1 4 + b 1 4

Ответ: а) 30 · x 3 · ( x 0 , 5 + 1 ) · x + 2 · x 1 1 3 — 5 3 45 · x 0 , 5 + 1 2 · x + 2 · x 1 1 3 — 5 3 = 2 · x 3 3 · ( x 0 , 5 + 1 ) , б) a 1 4 — b 1 4 a 1 2 — b 1 2 = 1 a 1 4 + b 1 4 .

К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.

Выполните действия x 1 2 + 1 x 1 2 — 1 — x 1 2 — 1 x 1 2 + 1 · 1 x 1 2 .

Решение

Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:

x 1 2 — 1 · x 1 2 + 1

x 1 2 + 1 x 1 2 — 1 — x 1 2 — 1 x 1 2 + 1 · 1 x 1 2 = = x 1 2 + 1 · x 1 2 + 1 x 1 2 — 1 · x 1 2 + 1 — x 1 2 — 1 · x 1 2 — 1 x 1 2 + 1 · x 1 2 — 1 · 1 x 1 2 = = x 1 2 + 1 2 — x 1 2 — 1 2 x 1 2 — 1 · x 1 2 + 1 · 1 x 1 2 = = x 1 2 2 + 2 · x 1 2 + 1 — x 1 2 2 — 2 · x 1 2 + 1 x 1 2 — 1 · x 1 2 + 1 · 1 x 1 2 = = 4 · x 1 2 x 1 2 — 1 · x 1 2 + 1 · 1 x 1 2

Теперь умножаем дроби:

4 · x 1 2 x 1 2 — 1 · x 1 2 + 1 · 1 x 1 2 = = 4 · x 1 2 x 1 2 — 1 · x 1 2 + 1 · x 1 2

Произведем сокращение на степень x 1 2 , получим 4 x 1 2 — 1 · x 1 2 + 1 .

Дополнительно можно упростить степенное выражение в знаменателе, используя формулу разности квадратов: квадратов: 4 x 1 2 — 1 · x 1 2 + 1 = 4 x 1 2 2 — 1 2 = 4 x — 1 .

Ответ: x 1 2 + 1 x 1 2 — 1 — x 1 2 — 1 x 1 2 + 1 · 1 x 1 2 = 4 x — 1

Упростите степенное выражение x 3 4 · x 2 , 7 + 1 2 x — 5 8 · x 2 , 7 + 1 3 .
Решение

Мы можем произвести сокращение дроби на ( x 2 , 7 + 1 ) 2 . Получаем дробь x 3 4 x — 5 8 · x 2 , 7 + 1 .

Продолжим преобразования степеней икса x 3 4 x — 5 8 · 1 x 2 , 7 + 1 . Теперь можно использовать свойство деления степеней с одинаковыми основаниями: x 3 4 x — 5 8 · 1 x 2 , 7 + 1 = x 3 4 — — 5 8 · 1 x 2 , 7 + 1 = x 1 1 8 · 1 x 2 , 7 + 1 .

Переходим от последнего произведения к дроби x 1 3 8 x 2 , 7 + 1 .

Ответ: x 3 4 · x 2 , 7 + 1 2 x — 5 8 · x 2 , 7 + 1 3 = x 1 3 8 x 2 , 7 + 1 .

Множители с отрицательными показателями степени в большинстве случаев удобнее переносить из числителя в знаменатель и обратно, изменяя знак показателя. Это действие позволяет упростить дальнейшее решение. Приведем пример: степенное выражение ( x + 1 ) — 0 , 2 3 · x — 1 можно заменить на x 3 · ( x + 1 ) 0 , 2 .

Преобразование выражений с корнями и степенями

В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.

Представьте выражение x 1 9 · x · x 3 6 в виде степени.

Решение

Область допустимых значений переменной x определяется двумя неравенствами x ≥ 0 и x · x 3 ≥ 0 , которые задают множество [ 0 , + ∞ ) .

На этом множестве мы имеем право перейти от корней к степеням:

x 1 9 · x · x 3 6 = x 1 9 · x · x 1 3 1 6

Используя свойства степеней, упростим полученное степенное выражение.

x 1 9 · x · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 · 1 3 · 6 = = x 1 9 · x 1 6 · x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3

Ответ: x 1 9 · x · x 3 6 = x 1 3 .

Преобразование степеней с переменными в показателе

Данные преобразования достаточно просто произвести, если грамотно использовать свойства степени. Например, 5 2 · x + 1 − 3 · 5 x · 7 x − 14 · 7 2 · x − 1 = 0 .

Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:

5 2 · x · 5 1 − 3 · 5 x · 7 x − 14 · 7 2 · x · 7 − 1 = 0 , 5 · 5 2 · x − 3 · 5 x · 7 x − 2 · 7 2 · x = 0 .

Теперь поделим обе части равенства на 7 2 · x . Это выражение на ОДЗ переменной x принимает только положительные значения:

5 · 5 — 3 · 5 x · 7 x — 2 · 7 2 · x 7 2 · x = 0 7 2 · x , 5 · 5 2 · x 7 2 · x — 3 · 5 x · 7 x 7 2 · x — 2 · 7 2 · x 7 2 · x = 0 , 5 · 5 2 · x 7 2 · x — 3 · 5 x · 7 x 7 x · 7 x — 2 · 7 2 · x 7 2 · x = 0

Сократим дроби со степенями, получим: 5 · 5 2 · x 7 2 · x — 3 · 5 x 7 x — 2 = 0 .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению 5 · 5 7 2 · x — 3 · 5 7 x — 2 = 0 , которое равносильно 5 · 5 7 x 2 — 3 · 5 7 x — 2 = 0 .

Введем новую переменную t = 5 7 x , что сводит решение исходного показательного уравнения к решению квадратного уравнения 5 · t 2 − 3 · t − 2 = 0 .

Преобразование выражений со степенями и логарифмами

Выражения, содержащие с записи степени и логарифмы, также встречаются в задачах. Примером таких выражений могут служить: 1 4 1 — 5 · log 2 3 или log 3 27 9 + 5 ( 1 — log 3 5 ) · log 5 3 . Преобразование подобных выражений проводится с использованием разобранных выше подходов и свойств логарифмов, которые мы подробно разобрали в теме «Преобразование логарифмических выражений».


источники:

http://skysmart.ru/articles/mathematic/pokazatelnye-uravneniya

http://zaochnik.com/spravochnik/matematika/vyrazhenija/stepennye-vyrazhenija/