Преобразования галилея инвариантность уравнений классической механики

Преобразования галилея инвариантность уравнений классической механики

1. Преобразования Галилея. Инвариантность уравнений классической механики относительно преобразования Галилея.

2. Основное уравнение молекулярно-кинетической теории идеального газа

3. При изохорном нагревании кислорода объемом 20 л давление газа изменилось на 0,1 МПа. Найти количество теплоты, сообщенное газу.

4. Пуля массой m=9 г, летящая горизонтально со скоростью V=500 м/с, попадает в баллистический маятник массой М=12 кг и застревает в нём. Определить максимальную высоту, на которую поднимается маятник после внедрения пули.

Принцип относительности Галилея.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: инерциальные системы отсчёта, принцип относительности Галилея.

Изучение теории относительности Эйнштейна мы начинаем с более глубокого рассмотрения принципа относительности Галилея. Это позволит нам лучше понять, каковы были предпосылки создания теории относительности.

Ключевую роль в механике и теории относительности играет понятие инерциальной системы отсчёта. Если вы забыли, что это такое, то обязательно прочитайте ещё раз Первый закон Ньютона.

В конце этой темы было кратко сказано о принципе относительности Галилея. Настало время поговорить о нём подробнее. В чём же суть данного принципа?

Наблюдатель на корабле.

Представьте себе, что вы находитесь в каюте корабля. Никакого движения в пространстве вы не ощущаете — вам кажется, что корабль стоит на месте. Но вас всё же интересует, покоится ли корабль или движется равномерно и прямолинейно. Можете ли вы установить это, не выглядывая в иллюминатор?

Допустим, что с данной целью вы производите всевозможные эксперименты, наблюдая различные механические явления в вашей каюте. Вы исследуете свободное падение тел, соскальзывание тела с наклонной плоскости, вращательное движение, колебания маятников, распространение звуковых волн. . . Вам детально известен ход этих явлений в неподвижной лаборатории на земле, и теперь вы пытаетесь найти какие-либо отклонения в их протекании, вызванные равномерным прямолинейным движением судна.

Никаких отклонений обнаружить не удастся! Поставив в каюте корабля любой механический эксперимент и сопоставив его с аналогичным экспериментом на земле, вы увидите, что полученные результаты не отличаются друг от друга. Например, вы бросаете мячик со скоростью 5 м/с под углом к горизонту относительно палубы. Оказывается, мячик на корабле опишет ровно ту же самую траекторию, что и на берегу при тех же начальных условиях (скорость и угол броска).

Равномерное прямолинейное движение корабля никак не сказывается на протекании механических явлений на этом корабле. Поэтому никакой опыт из механики, проведённый в лаборатории корабля, не в состоянии определить, покоится ли корабль или движется равномерно и прямолинейно.

Систему отсчёта, связанную с землёй, во многих ситуациях можно считать инерциальной.(Конечно, Земля совершает суточное вращение и движется вокруг Солнца, поэтому земная лаборатория будет иметь ускорение. Но во многих задачах этим ускорением можно пренебречь.) Система отсчёта корабля, движущаяся относительно земной системы отсчёта равномерно и прямолинейно, также будет инерциальной. Мы приходим к выводу, что с точки зрения механических явлений инерциальные системы отсчёта совершенно равноправны: никакой механический эксперимент не в состоянии выделить и сделать привилегированной какую-то одну инерциальную систему отсчёта по сравнению с остальными.

Это и есть принцип относительности, открытый Галилеем.

Принцип относительности Галилея. Всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчёта.

Инвариантность законов механики.

Принцип относительности Галилея означает, что законы механики одинаковы во всех инерциальных системах отсчёта. А именно, математическая форма второго и третьего законов Ньютона не меняется при переходе от одной инерциальной системы отсчёта к другой. Давайте убедимся в этом непосредственно на следующем простом примере.

Рассмотрим две системы отсчёта: и . Координатные оси этих систем сонаправлены. Систему будем считать неподвижной. Система движется относительно неё с постоянной скоростью вдоль общего направления осей и (рис. 1 )

Рис. 1. Система движется относительно системы

В тот момент, когда начала координат и совпадали, часы обеих систем были выставлены на ноль и запущены. Стало быть, часы в системах и идут синхронно, показывая одно и то же время . В момент времени расстояние равно .

Нас интересует, как описывается движение тела (для определённости называемого далее частицей) в системах отсчёта и .

Прежде всего, выясним, как связаны друг другом координаты частицы и моменты времени в обеих системах отсчёта.

Пусть в момент времени по часам частица имеет в системе координаты . Вообще, четвёрка чисел называется событием. Событие состоит в том, что в данной точке пространства в данный момент времени что-то происходит — вот, например, в точке с координатами в момент времени оказывается наша частица.

В системе это же событие описывается четвёркой чисел . А именно, местонахождение частицы в системе описывается координатами , а часы показывают при этом время .

Глядя на рис. 1 , совершенно ясно, что будет меньше на величину , координата совпадает с , а совпадает с . Кроме того, как уже было сказано, время на часах и одно и то же: .

Формулы (1) называются преобразованиями Галилея. Они связывают координаты и время одного и того же события, измеренные в разных инерциальных системах отсчёта: в движущейся системе и неподвижной системе .

Таким образом, преобразования Галилея в механике служат математическим описанием перехода от одной инерциальной системы отсчёта к другой. Рассмотрим некоторые следствия, вытекающие из преобразований Галилея.

Пусть наша частица имеет в системе скорость , а в системе — скорость . Как связаны между собой эти скорости? Дифференцируем первые три равенства (1) по времени (которое одинаково в обеих системах отсчёта):

Производные координат по времени — это проекции скоростей:

Три равенства (2) можно записать в виде одной векторной формулы:

Получился хорошо известный нам закон сложения скоростей: скорость тела относительно неподвижной системы отсчёта есть скорость тела относительно движущейся системы отсчёта плюс скорость движущейся системы относительно неподвижной. Мы видим, таким образом, что закон сложения скоростей в механике является следствием преобразований Галилея.

Дифференцируем по времени ещё раз — на сей раз соотношения (2) . Производная постоянной величины обращается в нуль, и мы получаем равенство ускорений:

Итак,
ускорение частицы одинаково во всех инерциальных системах отсчёта. Это ещё одно следствие преобразований Галилея.

Теперь запишем второй закон Ньютона для нашей частицы в системе :

При переходе в систему ускорение частицы , как мы выяснили, остаётся прежним. А что можно сказать об остальных двух величинах, входящих в (3) , — массе и силе?

Масса есть мера инертности тела; масса показывает, в какой степени тело «сопротивляется» изменению скорости. Но приращение скорости — нашей частицы будет одним и тем же в любой инерциальной системе отсчёта. Следовательно, масса частицы во всех инерциальных системах отсчёта одинакова.

Силы в механике зависят от расстояний между телами и, быть может, скоростей тел друг относительно друга. Но расстояние между двумя точками пространства одинаково во всех инерциальных системах отсчёта. Скорость одной частицы относительно другой также не зависит от того, в какой инерциальной системе отсчёта рассматривается движение. Стало быть, сила одинакова во всех инерциальных системах отсчёта.

Величины и соотношения, не меняющиеся при определённых условиях, часто называются инвариантными. Так, ускорение, масса и сила инвариантны относительно выбора инерциальной системы отсчёта. Поэтому второй и третий законы Ньютона во всех системах отсчёта имеют одинаковый вид, т. е. инвариантны относительно преобразований Галилея.

Законы механики инвариантны относительно преобразований Галилея — такова альтернативная формулировка принципа относительности Галилея. Подчеркнём, что речь идёт об инвариантности математической формы законов механики. В результате этой инвариантности одно и то же механическое явление, наблюдаемое при одних и тех же начальных условиях, будет протекать одинаково во всех инерциальных системах отсчёта

Преобразования галилея инвариантность уравнений классической механики

Название работы: Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта

Предметная область: Физика

Описание: Математически принцип относительности Галилея выражает инвариантность неизменность уравнений механики относительно преобразований координат движущихся точек и времени при переходе от одной инерциальной системы к другой преобразований Галилея.Пусть имеются две инерциальные системы отсчёта одну из которых S условимся считать покоящейся; вторая система S’ движется по отношению к S с постоянной скоростью u так как показано на рисунке. величинами не изменяющимися при переходе от одной системы отсчёта к другой. В кинематике все системы.

Дата добавления: 2013-09-05

Размер файла: 39.5 KB

Работу скачали: 87 чел.

22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.

Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.

Математически принцип относительности Галилея выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой — преобразований Галилея.
Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S’, движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S’ будут иметь вид:
x’ = x — ut, у’ = у, z’ = z, t’ = t (1)
(штрихованные величины относятся к системе S’, нештрихованные — к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.
Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:
v’ = v — u, (2)
a’ = a.
В классической механике движение материальной точки определяется вторым законом Ньютона:
F = ma, (3)
где m — масса точки, a F — равнодействующая всех приложенных к ней сил.
При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой.
Поэтому при преобразованиях Галилея уравнение (3) не меняется.
Это и есть математическое выражение Галилеева принципа относительности.

В кинематике все системы отсчета равноправны между собой и движение можно описывать в любой из них. При исследовании движений иногда приходится переходить от одной системы отсчета ( с координатной системой ОХУZ) к другой — (О`Х`У`Z`). Рассмотрим случай, когда вторая система отсчета движется относительно первой равномерно и прямолинейно со скоростью V=соnst.

Для облегчения математического описания предположим, что соответствующие оси координат параллельны друг другу, что скорость направлена вдоль оси Х, и что в начальный момент времени (t=0) начала координат обеих систем совпадали друг с другом. Используя справедливое в классической физике допущение об одинаковом течении времени в обеих системах, можно записать соотношения, связывающие координаты некоторой точки А(х,у,z) и А (х`,у`,z`) в обеих системах. Такой переход от одной системы отсчета к другой носит название преобразований Галилея):

х = х` + V x t х` = х — V x t

x = v` x + V x v` x = v x — V x

a x = a` x a` x = a x

Ускорение в обеих системах одинаково (V=соnst). Глубокий смысл преобразований Галилея будет выяснен в динамике. Преобразование скоростей Галилея отражает имеющий место в классической физике принцип независимости перемещений.

Сложение скоростей в СТО

Классический закон сложения скоростей не может быть справедлив, т.к. он противоречит утверждению о постоянстве скорости света в вакууме. Если поезд движется со скоростью v и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительна Земли все равно c , а не v + c .

Рассмотрим две системы отсчета.

В системе K 0 тело движется со скоростью v 1 . Относительно же системы K оно движется со скоростью v 2 . Согласно закону сложения скоростей в СТО:

Если v c и v 1 c , то слагаемым можно пренебречь, и тогда получим классический закон сложения скоростей: v 2 = v 1 + v .

При v 1 = c скорость v 2 равна c , как этого требует второй постулат теории относительности:

При v 1 = c и при v = c скорость v 2 вновь равна скорости c .

Замечательным свойством закона сложения является то, что при любых скоростях v 1 и v (не больше c ), результирующая скорость v 2 не превышает c . Скорость движения реальных тел больше, чем скорость света, невозможна.

При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.


источники:

http://ege-study.ru/ru/ege/materialy/fizika/princip-otnositelnosti-galileya/

http://5fan.ru/wievjob.php?id=32747