Преобразуйте уравнения чтобы они стали приведенными

Квадратные уравнения

Квадратное уравнение или уравнение второй степени с одним неизвестным — это уравнение, которое после преобразований может быть приведено к следующему виду:

ax 2 + bx + c = 0 — квадратное уравнение,

где x — это неизвестное, а a, b и c — коэффициенты уравнения. В квадратных уравнениях a называется первым коэффициентом (a ≠ 0), b называется вторым коэффициентом, а c называется известным или свободным членом.

называется полным квадратным уравнением. Если один из коэффициентов b или c равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения.

Приведённое квадратное уравнение

Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на a, то есть на первый коэффициент:

x 2 +bx +c= 0.
aa

Затем можно избавиться от дробных коэффициентов, обозначив их буквами p и q:

еслиb= p, аc= q,
aa

то получится x 2 + px + q = 0.

Уравнение x 2 + px + q = 0 называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

является приведённым, а уравнение:

можно заменить приведённым уравнением, разделив все его члены на -3:

Решение квадратных уравнений

Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

Для каждого вида уравнения есть своя формула нахождения корней:

Вид уравненияФормула корней
ax 2 + bx + c = 0
ax 2 + 2kx + c = 0
x 2 + px + q = 0
или
если коэффициент p нечётный

Обратите внимание на уравнение:

это преобразованное уравнение ax 2 + bx + c = 0, в котором коэффициент b — четный, что позволяет его заменить на вид 2k. Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё 2k вместо b:

Пример 1. Решить уравнение:

Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала определим, чему равны коэффициенты:

Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

x1 =-2= —1, x2 =-12= -2
636

Ответ:1, -2.
3

Определим, чему равны коэффициенты:

Так как в уравнении второй коэффициент — чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

Приведём уравнение к общему виду:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:

Уравнения. Рациональные уравнения. Преобразование уравнений.

Преобразования уравнений мы проводим при решении уравнений, когда последовательно заменяем компоненты уравнения, пока не получено наиболее простое х = а или совокупность уравнений такого вида.

При этом могут применяться такие методики: приведение подобных, добавить (отнять) от обеих частей уравнения алгебраическое выражение или отдельное число, умножить (разделить) обе части уравнения, возведение в степень обеих частей уравнений, выражение одной переменной через другую.

Выбор одного или группы методов, последовательность их выполнения обусловлены первоначальным условием. Главное, должен выполняться принцип тождественности преобразований (замен).

Так же при преобразовании уравнений необходима осторожность — неправильно преобразуя уравнение, мы можем, как приобрести лишние решения, так и потерять решения данного уравнения. При этом надо иметь в виду, что приобретение лишних решений не столь опасно, как потеря существующих. Ведь после того, как уравнение решено, можно подставить все найденные решения в заданное уравнение и отобрать те из решений, которые ему удовлетворяют. А потерянные решения восстановить уже не получится.


источники:

http://www.calc.ru/Uravneniya-Ratsionalnyye-Uravneniya-Preobrazovaniye-Uravneni.html