Презентация 11 класс фотоэффект уравнение эйнштейна

Презентация на тему: «Фотоэффект. Уравнение Эйнштейна для фотоэффекта».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Фотоэффект. Уравнение Эйнштейна для фотоэффекта. 2018

Автор презентации: преподаватель физики Магомедов Абдул Маграмович Депобразования и молодежи Югры бюджетное учреждение профессионального образования Ханты-Мансийского автономного округа – Югры «Мегионский политехнический колледж» (БУ «Мегионский политехнический колледж») Фотоэффект. Уравнение Эйнштейна для фотоэффекта.

Тепловое излучение тел Модель абсолютно черного тела Тепловым называется электромагнитное излучение, испускаемое нагретыми телами, за счет своей внутренней энергии. Абсолютно черное тело — тело, поглощающее всю энергию падающего на него излучения любой частоты при произвольной температуре.

В декабре 2000 года мировая научная общественность отмечала столетний юбилей возникновения новой науки – квантовой физики и открытие новой фундаментальной физической константы – постоянной Планка. Заслуга в этом принадлежит выдающемуся немецкому физику Максу Планку . Ему удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, проблему, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора, несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики.

Гипотеза Планка Планк пришел к выводу, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:

Фотоэффект. Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в (1900 г.)

Александр Григорьевич Столетов – экспериментально исследовал явление фотоэффекта.

НАБЛЮДЕНИЕ ФОТОЭФФЕКТА Фотоэффект –вырывание электронов из вещества под действием света.

Опыты Столетова А.Г.

Первый закон фотоэффекта Количество электронов, вырываемых светом с поверхности металла за 1 с, прямопропорционально поглащаемой за это время энергии световой волны.

Второй закон фотоэффекта Максимальная кинетическая энергия фотоэлектронов прямо пропорциональна частоте света и не зависит от его интенсивности.

Третий закон фотоэффекта Каждому веществу соответствует минимальная частота излучения (красная граница), ниже которой фотоэффект невозможен min , max

В1921 году « за вклад в теоретическую физику, особенно за открытие закона фотоэлектрического эффекта» Эйнштейн был награжден Нобелевской премией по физике. В 1905 году в существование квантов никто тогда не верил. Никто, кроме Эйнштейна.

Уравнение Эйнштейна для фотоэффекта

Работа выхода. Энергию связи электрона в металле характеризуют работой выхода Работа выхода – минимальная работа, которую нужно совершить для удаления электрона из металла A=hmin min = A / h

Вопросы и задачи: По какой причине открытые окна домов днем кажутся черными, хотя в комнате достаточно светло из-за отражения дневного света от стен? Найдите энергию фотона с длиной волны 400 нм. Используя данные таблицы (см.слайд 16), найдите красную границу фотоэффекта для цинка. Найдите задерживающую разность потенциалов для фотоэлектронов, вырываемых с поверхности вольфрама светом с длиной волны 400 нм.

1 понравилось, интересно, настроение хорошее 2 неинтересно, скучно, без настроения 3 безразлично, все равно как

Спасибо за работу! Спасибо за урок! Домашнее задание: § 88, 89 упр. 12 № 4, 5, 6

Планк (Planck) Макс (23.IV.1858–4.X.1947) Немецкий физик. Основоположник квантовой теории. Впервые, вопреки представлениям классической физики, предположил, что энергия излучения испускается не непрерывно, а порциями – квантами, и на основе этой гипотезы вывел закон теплового излучения (закон Планка). Ввел (1900) фундаментальную физическую постоянную – постоянную Планка (h = 6,626∙10–34 Дж/с), без которой невозможно описание свойств атома, молекулы и других квантовых систем. Нобелевская премия по физике (1918). Макс Планк Назад

Герц (Hertz) Генрих 22.II.1857–1.I.1894) Немецкий физик, один из основателей электродинамики. Исходя из уравнений Максвелла, Герц в 1886–89 экспериментально доказал существование электромагнитных волн и исследовал их свойства (отражение от зеркал, преломление в призмах и т. д.). Электромагнитные волны Герц получал с помощью изобретенного им вибратора. Герц подтвердил выводы максвелловской теории о том, что скорость распространения электромагнитных волн в воздухе равна скорости света, установил тождественность основных свойств электромагнитных и световых волн. Герц изучал также распространение электромагнитных волн в проводнике и указал способ измерения скорости их распространения. Развивая теорию Максвелла, Герц придал уравнениям электродинамики симметричную форму, которая хорошо обнаруживает полную взаимосвязь между электрическими и магнитными явлениями. Генрих Герц. Назад

Герц (Hertz) Генрих 22.II.1857–1.I.1894) Построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его электродинамика оказалась в противоречии с опытом и позднее уступила место электронной теории Х. Лоренца. Работы Герца по электродинамике сыграли огромную роль в развитии науки и техники и обусловили возникновение беспроволочной телеграфии, радиосвязи, телевидения, радиолокации и т. д. В 1886–87 Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонаторного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. В ряде работ по механике дал теорию удара упругих шаров, рассчитал время соударения и т. д. Именем Герца названа единица частоты колебаний. Генрих Герц. Назад

Краткое описание документа:

Тип урока. Урок изучения нового учебного материала.

Цель урока- познакомить учащихся с явлением фотоэффекта . Формирование общих представлений о законах фотоэффекта.

Основные понятия. Квантовая физика, формула Планка, фотоэффект, законы фотоэффекта, красная граница фотоэффекта, формула Эйнштейна для фотоэффекта.
Демонстрационный материал. Интерактивная модель «Фотоэффект».
Самостоятельная деятельность учащихся. Выполнение простейших экспериментов по интерактивной модели, решение задач.

Межпредметные связи на уроке
:
Химия: Атом, электрон.
История: История развития квантовой теории.

Использование новых информационных технологий: интерактивная модель «Фотоэффект», компьютерный тест «Излучения и спектры».
Структура урока.

N

Задачи этапов урока

Время, минут

Приемы и методы

Контроль усвоения предыдущей главы с помощью комп. теста

Организация работы на компьютерах с электронным тестом «Излучение и спектры»

Этап актуализации знаний.Мотивация учебной проблемы

Беседа об истории развития квантовой теории

Объяснение нового материала

Объяснение фотоэффекта при помощи интерактивной модели

Первичная проверка усвоениязнаний. Рефлексия.

Ответы на вопросы учащихся и решение задач.

1) Контроль усвоения предыдущей главы с помощью компьютерного теста.

Перед началом урока учитель включает компьютеры и запускает на них тестирующую программу, затем в класс запускаются ученики по количеству компьютеров, и начинается тестирование. После окончания тестирования выставить оценки в журнал.

2) Этап актуализации знаний. Мотивация учебной проблемы.
Короткий рассказ о зарождении квантовой теории, о проблеме объяснения коротковолнового излучения с помощью теории Максвелла. Формирование мотивации у учащихся к деятельности по освоению нового материала, в том числе постановка темы и определение основных целей последующих уроков.

3) Объяснение нового материала
Объяснение нового материала начать с постановки цели урока. Рассказать о наблюдении фотоэффекта Столетовым, после этого показать на экране интерактивную модель фотоэффекта из электронного учебного пособия по физике. Модель является компьютерным экспериментом по исследованию закономерностей внешнего фотоэффекта. Можно изменять значение напряжения U между анодом и катодом фотоэлемента и его знак, длину волны λ в диапазоне видимого света и мощность светового потока P.

В эксперименте можно определить красную границу фотоэффекта и найти работу выхода материала фотокатода. Можно измерить запирающий потенциал Uз для различных длин волн и определить постоянную Планка h.

Во время объяснения по интерактивной модели задавать учащимся проблемные вопросы: «Как повлияет на силу фототока увеличение интенсивности света?», «Почему задерживающее напряжение зависит от частоты света?» Предложить учащимся самостоятельно проверить по интерактивной модели зависимость задерживающего напряжения от частоты и интенсивности падающего света.

Дать представление учащимся о фотоэффекте.

Фотоэффектом называют вырывание электронов из вещества под действием света. Фотоэффект был открыт Г. Герцем (1887 г.). Теория фотоэффекта была развита А. Эйнштейном (1905 г.) на основе квантовых представлений. Классическая волновая теория света оказалась неспособной объяснить закономерности этого явления.

Согласно квантовым представлениям свет излучается и поглощается отдельными порциями (квантами), энергия E которых пропорциональна частоте ν E = hν
где h = 6,63•10–34 Дж•с – постоянная Планка.

Чтобы вырвать электрон из вещества, нужно сообщить ему энергию, превышающую работу выхода A. Максимальная кинетическая энергия фотоэлектрона определяется согласно Эйнштейну уравнением
Это уравнение объясняет основные закономерности фотоэффекта:
1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от падающего светового потока.
Если между фотокатодом и анодом вакуумного фотоэлемента создать электрическое поле, тормозящее движение электронов к аноду, то при некотором значении задерживающего напряжения Uз анодный ток прекращается. Величина Uз определяется соотношением
2. Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально мощности светового потока P.
3. Если частота света меньше некоторой определенной для данного вещества минимальной частоты νmin, то фотоэффект не происходит («красная граница фотоэффекта»)

4. У щелочных металлов красная граница лежит в диапазоне видимого света.
4) Первичная проверка усвоения знаний. Рефлексия
Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:
• Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от падающего светового потока.
• Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально мощности светового потока.
• Если частота света меньше некоторой определенной для данного вещества минимальной частоты, то фотоэффект не происходит.
Ответы учащихся на вопросы:

  • Что такое фотоэффект?
  • Почему фотоэффект на цинковой пластине происходит только при облучении её ультрафиолетовым светом?
  • Что такое задерживающее напряжение и отчего оно зависит?
  • Какие факты свидетельствуют о наличии у света корпускулярных свойств?

Подготовка к ЕГЭ(Фотоэффект)
презентация к уроку по физике (11 класс)

Материал для учеников 11 класса для подготовки к ЕГЭ по физике

Скачать:

ВложениеРазмер
podgotovka_k_ege.ppt1.52 МБ

Предварительный просмотр:

Подписи к слайдам:

ПОДГОТОВКА К ЕГЭ: решение задач на фотоэффект

СОДЕРЖАНИЕ ПРЕЗЕНТАЦИИ: 1 раздел. Теория фотоэффекта 2 раздел. Графики зависимостей величин при фотоэффекте 3 раздел. Решение задач уровня А и В 4 раздел. Решение расчетных задач уровня С

ФОТОЭФФЕКТ. ТЕОРИЯ. Фотоэффектом называется явление, состоящее в выбивании светом электронов, находящихся в металле.

ЗАКОНЫ ФОТОЭФФЕКТА І закон Величина фототока насыщения пропорциональна интенсивности светового потока. ІІ закон Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты и не зависит от его интенсивности. ІІІ закон Для каждого вещества существует минимальная частота света, называемая красной границей фотоэффекта, ниже которой фотоэффект невозможен.

ФОРМУЛА ЭЙНШТЕЙНА ЗСЭ в явлении фотоэффекта : Энергия фотона расходуется на: совершение работы выхода электронов с поверхности металла сообщение электрону кинетической энергии

НЕОБХОДИМЫЕ УСЛОВИЯ, ПРИ КОТОРОМ ВОЗМОЖЕН ФОТОЭФФЕКТ 1.Вылета электронов нет . 2.Вылет электронов может наступить, но при кинетической энергии равной 0, где ν 1 – красная граница фотоэффекта. 3.Наблюдается вылет электронов обладающих кинетической энергией . 4.Если кинетическая энергия электронов не максимальная

ГРАФИКИ ЗАВИСИМОСТЕЙ ВЕЛИЧИН ПРИ ФОТОЭФФЕКТЕ

ЗАВИСИМОСТЬ СИЛЫ ФОТОТОКА ОТ ПРИЛОЖЕННОГО НАПРЯЖЕНИЯ. Чем выше расположен график, тем больше ток насыщения, тем больше интенсивность падающего света. Интенсивность падающего света пропорциональна числу электронов, вырванных из металла: — максимальное число фотонов — минимальное число фотонов

ЗАВИСИМОСТЬ МАКСИМАЛЬНОЙ ЭНЕРГИИ ЭЛЕКТРОНОВ ОТ ИНТЕНСИВНОСТИ ПАДАЮЩЕГО СВЕТА Максимальная кинетическая энергия электронов Е к > 0 не зависит от интенсивности падающего света .

ЗАВИСИМОСТЬ ЗАДЕРЖИВАЮЩЕГО НАПРЯЖЕНИЯ ОТ ЧАСТОТЫ ПАДАЮЩЕГО СВЕТА. Точка пересечения ν min – красная граница фотоэффекта. Угол наклона одинаков для всех графиков, при tg α = — h/e

ЗАВИСИМОСТЬ ЗАДЕРЖИВАЮЩЕГО НАПРЯЖЕНИЯ ОТ ДЛИНЫ ВОЛНЫ График — гипербола, смещенная по оси абсцисс вниз Задерживающее напряжение — это напряжение при котором все выбитые из катода электроны тормозятся у анода , после чего возвращаются назад, — зависит от максимальной кинетической энергии, которую имеют вырванные светом электроны — не изменяется при изменении интенсивности света.

ЗАВИСИМОСТЬ МАКСИМАЛЬНОЙ СКОРОСТИ ФОТОЭЛЕКТРОНОВ ОТ ЭНЕРГИИ ПАДАЮЩИХ НА ВЕЩЕСТВО ФОТОНОВ График – ветвь параболы, смещенная по оси абсцисс вправо

ПРЯМАЯ ЭЙНШТЕЙНА График — прямая линия, точка пересечения с осью частот дает красную границу фотоэффекта

ЗАДАЧА 1 Уравнение Эйнштейна для фотоэффекта представляет собой применение к данному явлению закона сохранения импульса заряда энергии момента импульса Уровень А (базовый)

ЗАДАЧА 2 При изучении фотоэффекта увеличили частоту излучения без изменения светового потока. При этом… Увеличилось количество вылетающих из металла электронов Увеличилась скорость вылетающих электронов Увеличилась сила фототока насыщения Увеличилась работа выхода электронов из металла Решение. Согласно II закону фотоэффекта при увеличении частоты света увеличится линейно связанная с частотой кинетическая энергия, соответственно и скорость. Уровень А (базовый)

ЗАДАЧА 3 При фотоэффекте с увеличением длины волны падающего света работа выхода фотоэлектронов уменьшается увеличивается не изменяется увеличивается или уменьшается в зависимости от кинетической энергии фотоэлектронов Решение. Согласно II I закону фотоэффекта, каждому веществу соответствует Своя красная граница фотоэффекта. Запишем формулу для расчета работы выхода Следовательно, при увеличении длины волны, работа выхода уменьшается. Уровень А (базовый)

ЗАДАЧА 4 При увеличением интенсивности света, падающего на фотокатод уменьшается максимальная кинетическая энергия фотоэлектронов увеличивается число фотоэлектронов увеличивается скорость фотоэлектронов увеличивается работа выхода электронов Решение. По I закону фотоэффекта увеличение интенсивности света приводит к увеличению числа фотоэлектронов Уровень А (базовый)

ЗАДАЧА 5 Какое (-ие) из утверждений справедливо (-ы)? А. Максимальная кинетическая теория фотоэлектронов линейно возрастает с частотой и не зависит от интенсивности света. Б. Максимальная кинетическая теория фотоэлектронов обратно пропорциональна частоте света и зависит от интенсивности света. только А только Б и А, и Б ни А, ни Б Уровень А (базовый)

ЗАДАЧА 6 Уровень А (базовый) Одним из фактов, подтверждающих квантовую природу света, является внешний фотоэффект. Фотоэффект- это А. возникновение тока в замкнутом контуре или разности потенциалов на концах разомкнутого контура при изменении магнитного потока, пронизывающего контур. Б. выбивание электронов с поверхности металла под действием света. В. Взаимное проникновение соприкасающихся веществ вследствие беспорядочного движения составляющих их частиц. Какое (-ие) из утверждений справедливо (-ы)? Только А Только Б Только В А и В

ЗАДАЧА 7 В опытах по фотоэффекту взяли металлическую пластину с работой выхода 3,5 эВ и стали освещать ее светом с частотой . Затем частоту падающего света увеличили в 2 раза, а интенсивность падающего света оставили прежней. В результате этого максимальная кинетическая энергия фотоэлектронов увеличилась в 2 раза не изменилась увеличилась более чем в 2 раза фотоэлектронов нет ни в первом, ни во втором случае Решение. 1. По уравнению Эйнштейна для фотоэффекта 2. Выразим в эВ: 3.Вычислим для 1 случая 4. Вычислим для 2 случая 5. Сравним 3 ۠ ∙ 10 15 Гц Уровень А (повышенный)

ЗАДАЧА 8 В опытах по фотоэффекту взяли металлическую пластину с работой выхода и стали освещать ее светом с частотой . Затем частоту увеличили в 2 раза, оставив неизменным число фотонов, падающих на пластину за 1 с. В результате число фотоэлектронов, покидающих пластину за 1с: не изменилось стало не равным нулю увеличилось в два раза увеличилось менее чем в 2 раза Решение. 1. По уравнению Эйнштейна для фотоэффекта 2. Вычислим энергию кванта и сравним с работой выхода:: 3.Т.е первоначальной энергии недостаточно, чтобы начался процесс выбивания электронов Ответ:2 3 ۠ ∙ 10 14 Гц Уровень А (повышенный) 3, 4 ۠ ∙ 10 -19 Дж 3, 4 ۠ ∙ 10 -19 Дж

ЗАДАЧА 9 На рисунке представлен график зависимости силы фототока в фотоэлементе от приложенного к нему напряжения. Если начать увеличивать частоту падающего на катод света ( при одинаковой интенсивности света). На каком из приведенных ниже графиков правильно показано изменение графика? (первоначальное состояние –пунктирная линия) Уровень А (повышенный) Решение. Запишем уравнение Эйнштейна для фотоэффекта через задерживающее напряжение : Выразим задерживающее напряжение , следовательно При увеличении частоты запирающее напряжение уменьшается, нижняя часть графика будет сдвигаться влево. Ответ: 1

2 способ решения: Интенсивность падающего света определяется отношением суммарной энергии падающих фотонов к интервалу времени и площади поверхности, на которую они падают С ростом частоты постоянная интенсивность излучения означает уменьшение числа фотонов. Т.е с увеличением частоты падает ток насыщения. Следовательно, уменьшается значение запирающего напряжения. Уровень А (базовый)

ЗАДАЧА 10 Уровень А (повышенный) На рисунке представлен график зависимости силы фототока в фотоэлементе от приложенного к нему напряжения. В случае увеличения интенсивности падающего света той же частоты график изменится. На каком из приведенных ниже графиков правильно показано изменение графика? Решение. Запишем уравнение Эйнштейна для фотоэффекта через задерживающее напряжение : так как задерживающее напряжение не меняется , а увеличение интенсивности приводит к увеличению числа электронов, то, значение не изменяется , то график будет сдвигаться вверх. Ответ: 2

ЗАДАЧА 11 Слой оксида кальция облучается светом и испускает электроны. На рисунке показан график изменения максимальной энергии фотоэлектронов в зависимости от частоты падающего света. Какова работа выхода фотоэлектронов из оксида кальция? 0,7 эВ 1,4 эВ 2,1 эВ 2,8 эВ Решение. По графику определим численное значение По формуле для работы выхода Переводим Дж в эВ Уровень А (повышенный)

ЗАДАЧА 12 На рисунке представлен график зависимости максимальной кинетической энергии фотоэлектронов от частоты фотонов, падающих на поверхность катода. Какова работа выхода электрона с поверхности катода? 1эВ 1.5 эВ 2эВ 3,5 эВ Решение. По уравнению Эйнштейна для фотоэффекта По графику находим, что при частоте равной 0, Уровень А (повышенный)

ЗАДАЧА 13 Уровень В (базовый) К каждому элементу первого столбца подберите соответствующий элемент из второго и внесите в строку ответов выбранные цифры под соответствующими буквами Физическое явление Название явления А. Явление вырывания электронов из вещества под действие света 1) Внутренний фотоэффект Б. Явление вырывания электронов из вещества, при котором электроны остаются внутри него 2) Внешний фотоэффект А Б 2 1

ЗАДАЧА 14 Металлическую пластину освещали монохроматическим светом с длиной волны λ =500нм одинаковой интенсивности. Что происходит с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны λ =700нм? К каждому элементу первого столбца подберите соответствующий элемент из второго и внесите строку ответов выбранные цифры под соответствующими буквами. Физические величины Характер изменений А. частота падающего света 1) увеличится Б. импульс фотонов 2) уменьшится В. кинетическая энергия вылетающих электронов 3) не изменится А Б В 2 2 2 Уровень В (повышенный)

ЗАДАЧА 15 Уровень В (повышенный) А Б 1 3

РЕШЕНИЕ РАСЧЕТНЫХ ЗАДАЧ, ИСПОЛЬЗУЯ КВАНТОВОЕ ДЕРЕВО

КВАНТОВОЕ ДЕРЕВО Уровень С

ЗАДАЧА 15 Фотокатод освещается монохроматическим светом , энергия которого равна 4эВ. Чему равна работа выхода материала катода, если задерживающее напряжение равно 1, 5 эВ? Решение. Согласно уравнению Эйнштейна для фотоэффекта, по основной ветви Выразим работу выхода Вычислим: Уровень С

ЗАДАЧА 16 Фотоны, имеющие энергию 5 эВ, выбивают электроны с поверхности металла. Работа выхода электронов из металла равна 4,7 эВ. Какой импульс приобретает электрон при вылете с поверхности металла? Решение. Согласно уравнению Эйнштейна для фотоэффекта, кинетическая энергия фотоэлектронов равна, , импульс равен Следовательно, решая совместно уравнения получим: Уровень С

ЗАДАЧА 17 При облучении металла светом с длиной волны 245 нм наблюдается фотоэффект. Работа выхода электрона из металла равна 2,4 эВ. Рассчитайте величину напряжения, которое нужно приложить к металлу, чтобы уменьшить максимальную скорость вылетающих фотоэлектронов в 2 раза. Решение . 1.Запишем уравнение Эйнштейна для фотоэффекта: или 2.Формулу для расчета работы электрического поля при описании движения фотоэлектрона: 3.Решим систему двух уравнений: Где υ 1 – скорость движения электронов после вырывания с поверхности металла, υ 2 – скорость движения электронов под влиянием электрического поля. 4. Решая совместно уравнения, получим: Ответ : U з = 2 В. Уровень С

ЗАДАЧА 18 Фотокатод, покрытый кальцием (работа выхода 4,42  10 –19 Дж), освещается светом с длиной волны 300 нм. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией 8,3  10 –4 Тл перпендикулярно линиям индукции этого поля. Каков максимальный радиус окружности, по которой движутся электроны? 1.Уравнение Эйнштейна для фотоэффекта: 2.Уравнение, связывающее на основе второго закона Ньютона силу Лоренца, действующую на электрон, с величиной центростремительного ускорения: 3.Решая систему уравнений Ответ : R  4,7  10 –3 м. Решение. Уровень С

ЗАДАЧА 19 В вакууме находятся два электрода, к которым подключен конденсатор емкостью С = 4000 пФ. При длительном освещении одного электрода светом с длиной волны λ= 300 нм фототок между электродами, возникший вначале, прекращается, а на конденсаторе появляется заряд q = 5,5·10 -9 Кл. Какова работа выхода А вых электронов из вещества фотокатода? Емкостью системы электродов пренебречь. Решение. 1.Запишем уравнение Эйнштейна для фотоэффекта или 2.Запишем равенство кинетической энергии электрона его энергии в электрическом поле конденсатора: формулу расчета электроемкости конденсатора: 3. Совместно решая уравнения : Ответ: 4,4·10 -19 Дж. Уровень С

ЗАДАЧА 20 Красная граница фотоэффекта для вольфрама равна 275 нм. Найти величину задерживающего напряжения, если вольфрам облучается фотонами, масса которых равна 1,2 ·10 -35 кг. Решение. По уравнению Эйнштейна для фотоэффекта кинетическая энергия фотоэлектронов равна, Работа выхода равна Энергия фотона Следовательно, решая совместно уравнения получим: Ответ: 2,2 В Уровень С

ЗАДАЧА 21 Фотокатод, покрытый кальцием (работа выхода 4,42  10 –19 Дж), освещается светом с частотой ν . Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией 4  10 –4 Тл перпендикулярно линиям индукции этого поля и движутся по окружности максимального радиуса, равного 10мм. Какова частота падающего света? Решение: 1.Уравнение Эйнштейна для фотоэффекта: 2.Уравнение, связывающее на основе второго закона Ньютона силу Лоренца, действующую на электрон, с величиной центростремительного ускорения: 3. Выражаем скорость из 2) уравнения 4. Подставим в 1) уравнение 5. Выведем Ответ: Гц 1  10 15 Уровень С

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА Мякишев Г.Я. Физика: Учебник для 11 кл. общеобразовательных учреждений. ЕГЭ 2010. Физика:экзаменационные задания/М.Ю.Демидова, И.И. Нурминский. — М.: Эксмо, 2010.-304 с. – (ЕГЭ. Федеральный банк экзаменационных материалов). Е. Б. Колпакова. СОШ № 2, с. Богучаны, Красноярский край. Издательский дом «Первое сентября». Физика. № 19 2006г. Фадеева А.А. ЕГЭ 2011. Физика: тематические тренировочные задания. –М. : Эксмо, 2010. – 112 с. (ЕГЭ. Тематические тренировочные задания). О.Э. Родионова. Графические задачи по теме «Фотоэффект» Издательский дом «Первое сентября» Физика. №6.2009 г. 17стр.

Фотоэффект. Теория фотоэффекта. 11-й класс

Класс: 11

Презентация к уроку

Цели урока:

  • сформировать у учащихся представления о фотоэффекте и изучить его законы;
  • развивать познавательную активность школьников с помощью проблемных вопросов, исторического материала;
  • сформировать понятие кванта энергии, расширить представления учащихся об области применения закона сохранения энергии;
  • сформировать умение решать задачи с использованием уравнения Эйнштейна;
  • продолжить формирование познавательного интереса к предмету.

1. Организационный момент

2. Повторение

В предыдущей главе были рассмотрены трудности, возникшие при описании движения тел с релятивистскими скоростями, и показаны пути решения этой проблемы, с которой столкнулась физика в начале ХХ века. Все это вместе создало ситуацию, которая была названа кризисом классической физики. Разрешить этот кризис удалось путем создания теории относительности и квантовой теории – двух фундаментальных теорий, возникших в начале ХХ века.

3. Введение нового материала:

1) В развитии представлений о природе света важный шаг был сделан при изучении одного замечательного явления.

Опыты Г. Герца – (Слайды 4-6)

2) Для того чтобы получить о фотоэффекте более полное представление. Нужно выяснить, от чего зависит число вырванных светом электронов и чем определяется их скорость и кинетическая энергия.

Опыты А. Г. Столетова. Изучение устройства и работы установки Столетова. (Слайд 7)

3) Законы фотоэффекта, экспериментально установленные А. Г. Столетовым. (Слайды 8-10)

4) Теория фотоэффекта

Объяснение фотоэффекта было дано в 1905 году А. Эйнштейном, развившим идеиМ. Планка о прерывистом испускании света. В экспериментальных закономерностях фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями.

Историческая справка

Шестнадцать лет спустя классическую простоту уравнения Эйнштейна Шведская академия наук отметила Нобелевской премией. Но в 1905 году, когда уравнение было написано впервые, на него ополчились все, даже Планк. Эйнштейн поступил так. Как будто до него вообще не существовало физики, или, по крайне мере. Как человек. Ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность ума Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам, причем случайных фактов в физике для него не существовало. Поэтому в явлении фотоэффекта он увидел не досадное исключение из правил оптики, а сигнал природы о существовании еще неизвестных, но глубоких законов. Так уж случилось. Что исторически сначала были изучены волновые свойства света. Только в явлении фотоэффекта физики впервые столкнулись с его корпускулярными свойствами. У большинства из них инерция мышления была настолько велика, что они отказывались верить.

5) Красная граница фотоэффекта

Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота света vсвета больше минимального значения vmin. Ведь, что бы вырвать электрон из металла даже без сообщения ему кинетической энергии, нужно совершить работу выхода А.

6) Экспериментальное определение постоянной Планка. (Слайд 13)

4. Решение задач

Все задания в презентации взяты из материалов ЕГЭ по физике. Можно выбрать задачи любого уровня: в презентации присутствуют задания:

Части А – базового уровня с ответами (Слайды 14-19);
ЧастиВ – повышенного уровня с ответами и решениями (Слайды 20-25);
Части Сс ответами и решениями (Слайды 26-31).

5. Обобщение урока

  • В начале ХХ века зародилась квантовая теория – теория движения и взаимодействия элементарных частиц и состоящих из них систем.
  • Для объяснения теплового излучения М. Планк предположил, что атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами.
  • Поглощается электромагнитная энергия тоже отдельными порциями. Это подтверждает явление фотоэффекта открытого Г. Герцем и экспериментально исследованного А. Столетовым.
  • Объяснение фотоэффекта было дано А. Эйнштейном.
  • При излучении и поглощении свет проявляет корпускулярные свойства.

6. Задание на дом: § 88, 89 задание № 3 Части А – повышенный уровень (Слайд 24)


источники:

http://nsportal.ru/shkola/fizika/library/2021/10/26/podgotovka-k-egefotoeffekt

http://urok.1sept.ru/articles/605012