Презентация способы решений систем линейных уравнений

«Решение систем линейных уравнений»
презентация к уроку по алгебре (7 класс) на тему

3 презентации к урокам

Скачать:

ВложениеРазмер
Решение систем линейных уравнений. Метод подстановки391.5 КБ
Решение систем линейных уравнений. Метод сложения485.5 КБ
Решение систем линейных уравнений. Графический метод559.5 КБ

Предварительный просмотр:

Подписи к слайдам:

Предварительный просмотр:

Подписи к слайдам:

Предварительный просмотр:

Подписи к слайдам:

Решение систем линейных уравнений Алгебра (7 класс) Учитель математики Васютина Е.Г. Гимназия Альма Матер

Графический способ решения систем линейных уравнений

Дана система линейных уравнений Рассмотрим каждое уравнение в отдельности. Геометрической иллюстрацией уравнения с двумя неизвестными служит его график на координатной плоскости.

Дана система линейных уравнений Рассмотрим первое уравнение Выразим из этого уравнения y через x .

Поэтому графиком данного уравнения является прямая. Данное уравнение можно рассматривать как формулу, задающую линейную функцию. Для построения графика найдем две точки. 1) 2 )

Вернемся к системе линейных уравнений Рассмотрим второе уравнение Выразим из этого уравнения y через x .

Поэтому графиком данного уравнения является прямая. Данное уравнение также как и первое можно рассматривать как формулу, задающую линейную функцию. Для построения графика найдем две точки. 1) 2 )

Построим график второй функции

Найдем координаты точки пересечения прямых

Координаты точки пересечения прямых ― это решение системы В этом случае говорят, что система решена графически

Для графического решения системы нужно: Построить графики каждого из уравнений системы. Найти координаты точки пересечения построенных прямых (если они пересекаются)

Однако при графическом способе решения системы уравнений обычно получается приближенное решение

Но На плоскости возможны три случая взаимного расположения двух прямых ― графиков уравнений системы

Три случая взаимного расположения двух прямых 1. Прямые пересекаются. То есть имеют одну общую точку. Тогда система уравнений имеет единственное решение. Например, как в рассмотренной системе

Три случая взаимного расположения двух прямых 2. Прямые параллельны. То есть не имеют общих точек. Тогда система уравнений решений не имеет. Например:

Три случая взаимного расположения двух прямых 3. Прямые совпадают. Тогда система уравнений имеет бесконечно много решений. Например:

Решите графически следующие системы уравнений

Подберите, если возможно такое значение m , при котором система имеет а) единственное решение б) не имеет решений в) имеет бесконечное множество решений

Подберите, если возможно такое значение m , при котором система имеет а) единственное решение б) не имеет решений в) имеет бесконечное множество решений

Подберите, если возможно такое значение m , при котором система имеет а) единственное решение б) не имеет решений в) имеет бесконечное множество решений

Графический способ решения систем линейных уравнений Домашнее задание: № 642 (1,3); № 644-646(1)

Урок закончен. Спасибо. До встречи на следующем уроке!

Презентация «Способы решения систем линейных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Коровякова.docx

Автор: Коровякова Надежда Анатольевна

Должность: преподаватель математики

Образовательное учреждение: ГАОУ СПО ТО «Тюменский лесотехнический техникум»

Тема урока: Способы решения систем линейных уравнений.

Класс: 1 курс ОУ СПО .

Ключевые слова : система уравнений, графический способ, способ подстановки, определители, формулы Крамера, практическое занятие .

Оборудование : компьютерный класс, интерактивная доска, проектор.

Тип урока : практическое занятие .

Формы работы : фронтальная, коллективная.

Аннотация: презентация спланирована как конспект для преподавателя, позволяет систематизировать знания и иллюстрировать ход и последовательность решения задач , содержит теоретический материал по теме, примеры решения задач и задания для самостоятельного решения.

Цель урока: Дать представление о многообразии способов решения систем линейных уравнений.

1. Систематизация знаний о способах решения систем уравнений.

2. Повторение ранее изученных способов и изучение нового способа- способа определителей.

3. Развитие логического мышления.

Выбранный для просмотра документ Способы решения систем линейных уравнений.ppt

Описание презентации по отдельным слайдам:

Способы решения систем линейных уравнений.
Практическое занятие.

Решить систему уравнений, значит найти пару чисел (Х,У), являющихся решением каждого из уравнений входящих в систему.
1) Графический способ.
Алгоритм решения:
1) построить в одной системе координат графики функций, образующих систему;
2) определить точку их пересечения.
3) записать в ответ х= у= .

Ответ: система не имеет решений.

2) Способ подстановки.
Алгоритм решения:
1) выразить Х ( или У) из одного уравнения системы;
2) подставить найденное выражение в другое уравнение системы.
Ответ: х = 1, у = -1.

Определителем (детерминантом) второго порядка называется число, определяемое равенством:

Пример. Вычислить определитель:

Пример. Вычислить определитель:

4) Способ определителей.
Алгоритм решения:
1) вычислить три определителя:
2) найти Х и У по формулам Крамера:
а) если Δ≠0, то система имеет единственное решение,

б) если Δ=0, Δх=0 и Δу=0, то система имеет
бесконечное множество решений,

в) если Δ=0 и хотя бы один из Δх≠0 или Δу≠0,
то система не имеет решений.

Пример. Решить систему уравнений:

Пример. Решить систему уравнений:

Пример. Решить систему уравнений:

Пример. Решить систему уравнений:
Ответ: х = 1,15; у = 0,7.

Решить системы уравнений:

Спасибо за внимание

Выбранный для просмотра документ ‚ ¦­®!.txt

Данный материал был скачан с сайта www . metod — kopilka . ru

. Орфография и форматирование автора материала.

Образовательно-информационный ресурс для учителей информатики,

учащихся и всех-всех, кто интересуется ИТ:

http :// www . metod — kopilka . ru Методическая копилка учителя информатики

Организационные, методические и нормативные документы,

лабораторно-практические работы (комплекс занятий по MS Word , MS Excel ,

MS Access, MS PowerPaint, Paint, Move Maker и др. прикладным программам),

лекции,конспекты, дидактический материал, занимательная информатика,

экзамен, проектная деятельность, презентации.

Все в свободном доступе! Без регистрации!

Краткое описание документа:

Оборудование: компьютерный класс, интерактивная доска, проектор. Тип урока: практическое занятие. Формы работы: фронтальная, коллективная. Аннотация: презентация спланирована как конспект для преподавателя, позволяет систематизировать знания и иллюстрировать ход и последовательность решения задач, содержит теоретический материал по теме, примеры решения задач и задания для самостоятельного решения. Цель урока: Дать представление о многообразии способов решения систем линейных уравнений. Задачи: Систематизация знаний о способах решения систем уравнений. Повторение ранее изученных способов и изучение нового способа — способа определителей. Развитие логического мышления. Слайд 1 Слайд 2 Слайд 15 Слайд 16

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 949 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 681 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 568 451 материал в базе

Другие материалы

  • 30.12.2020
  • 123
  • 0
  • 30.12.2020
  • 85
  • 0
  • 30.12.2020
  • 135
  • 0
  • 30.12.2020
  • 191
  • 1

  • 30.12.2020
  • 135
  • 0
  • 30.12.2020
  • 127
  • 0
  • 30.12.2020
  • 155
  • 0
  • 15.12.2020
  • 168
  • 1

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 28.02.2020 93
  • ZIP 347.6 кбайт
  • 0 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Московкина Лариса Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 1 месяц
  • Подписчики: 0
  • Всего просмотров: 31817
  • Всего материалов: 234

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения. — презентация

Презентация была опубликована 6 лет назад пользователемМарина Городенская

Похожие презентации

Презентация на тему: » Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения.» — Транскрипт:

1 Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения. Цель: Рассмотреть понятие СЛАУ.

2 Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: Здесь x 1, x 2,, x n – неизвестные величины; a ij (i = 1,2, …, m; j =1,2, …, n) – числа, называемые коэффициентами системы (первый индекс — номер уравнения, второй номер неизвестной); b 1, b 2, …, b m – числа, называемые свободными членами.

3 Решением системы Решением системы будем называть упорядоченный набор чисел x 1, x 2, …, x n, обращающий каждое уравнение системы в верное равенство. Решитьсистему Решить систему значит найти все ее решения или доказать, что ни одного решения нет. совместной Система, имеющая решение, называется совместной.

4 Если система имеет только одно решение, то она называется определенной определенной. Система, имеющая более чем одно решение, называется неопределенной совместной неопределенной (совместной и неопределенной неопределенной). Если система не имеет решений, то несовместной она называется несовместной.

5 Система, у которой все свободные члены равны нулю (b 1 = b 2 =…= b n = 0), однородной называется однородной. Однородная система всегда совместна, так как набор из n нулей удовлетворяет любому уравнению такой системы. Если число уравнений системы совпадает с числом неизвестных (m=n), квадратной то система называется квадратной.

6 Две системы, множества решений которых совпадают, называются эквивалентными эквивалентными или равносильными. равносильными.

7 Преобразование,применение которого превращает систему в новую систему, эквивалентную исходной,называется эквивалентным равносильным эквивалентным или равносильным преобразованием. преобразованием.

8 Общий метод решения СЛАУ. (Метод Гаусса). Если система совместна, т. е. rang A = rang A* = (r),то r-уравнений СЛАУ линейно-независимы, а остальные (n — r) являются линейными комбинациями. Решить систему значит выразить базисные неизвестные через свободные, придавая различные значения свободным неизвестным.

9 Общий метод решения однородной СЛАУ. Теорема: Если ранг матрицы однородной СЛАУ = r, то система имеет (m — r) линейно — независимых решений. Опр.: Совокупность решений, т. е. совокупность называется фундаментальной системой решений однородной СЛАУ.

10 Теорема об общем решении не одноодной СЛАУ. Теорема: Если фундаментальная система решений соотв-щей однор. СЛАУ; — некоторое решение не одно. СЛАУ, то сумма — решение не одно. СЛАУ. Полученное решение называется общим решением не одноодной СЛАУ.

11 Матричный способ решения СЛАУ. СЛАУ запишем в виде А х Х=В. Если det A0, то для матрицы А сущ. обратная А-1. Умножим обе части СЛАУ слева на А-1: А-1 х А х Х = А-1 х В; Е х Х = А-1 х В; Х = А-1 х В.

12 Метод Крамера. СЛАУ имеет вид А х Х=В при det A0 ; Х=А-1 х В. х 1 A11 A12 … An1 b1 х 2 = A21 A22 … An2 х b2 = хn A1n A2n … Ann n х n bn n х 1 A1n х b1 + A2n х b2 + Ann х bn A11 х b1 + A21 х b2 ……… A12 х b1 + A22 х b2 ………

13 1. 2. Числители — величина определителя, разложенного по первому столбцу, тогда первый столбец это элементы b 1, b 2 … b n, а остальные столбцы – это столбцы матрицы А и т.д. Если det A0, то СЛАУ имеет единственное решение и определяется формулами:

14 Элементарные преобразования матрицы 1) перемена местами двух строк; 2) умножение строки на число, отличное от нуля; 3) замена строки матрицы суммой этой строки с любой другой строкой, умноженной на некоторое число.

15 Назовем квадратную матрицу, у которой на главной диагонали стоят числа, отличные от нуля, а под главной диагональю – нули, треугольной матрицей треугольной матрицей. Если с помощью элементарных преобразований матрицу коэффициентов квадратной системы можно привести к треугольной матрице, то система совместна определен на совместна и определенна.

16 A Если матрицу A можно разделить вертикальной чертой на две матрицы: стоящую слева треугольную матрицу размера m m и стоящую справа прямоугольную матрицу, Aтрапециевидной то матрицу A назовем трапециевидной или трапецеидальной трапецеидальной.

17 Если при преобразовании расширенной матрицы системы матрица коэффициентов приводится к трапецеидальному виду и при этом система не получается противоречивой, то система совместна и является бесконечно неопределенной, то есть имеет бесконечно много решений много решений.

18 Те переменные, коэффициенты при которых стоят на главной диагонали трапецеидальной матрицы (это значит, что эти коэффициенты базисными отличны от нуля), называются базисными. Остальные неизвестные называются свободными свободными.

19 Если свободным неизвестным при даны конкретные числовые значения и через них выражены базисные неизвестные, то полученное частным решение называется частным решением решением. Если свободные неизвестные выражены через параметры, то получается решение, которое общим решением. называется общим решением.

20 Если всем свободным неизвестным приданы нулевые значения, то полученное решение базисным называется базисным. Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, рангом системы называемое рангом системы.

21 Вопросы: 1)Когда система имеет единственное решение? 2)Какие элементарные преобразования матрицы можно делать при решении СЛАУ?


источники:

http://infourok.ru/prezentaciya-sposoby-resheniya-sistem-linejnyh-uravnenij-4915767.html

http://www.myshared.ru/slide/1246262/