При каких а уравнение имеет 12 решений

Решение показательных уравнений с параметрами

Разделы: Математика

Цели урока: Учащиеся должны знать способы решений уравнений вида – показательная функция и уметь применять при решении задач.

Ход урока.

Для первой группы учащихся выдавались следующие задания.

Для каждого значения a решить уравнения:

Задания для второй группы учащихся.

Указать число решений в зависимости от параметра а.

Третья группа решает уравнения, сводящиеся к квадратным.

Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.

Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.

Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.

Выступление первой группы – решение показательных уравнений вида

Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.

Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.

Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.

Если k = 0, b ≠ 0, то 0 · x = b – нет решений.

Если k ≠ 0, то , один корень.

Задание 1. Решить уравнение .

Докладчик решает у доски с комментариями, остальные записывают в тетрадях.

Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).

Исследуем полученное уравнение:

Ответ:

На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.

Выступление второй группы – решение уравнений вида

Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.

Далее идёт диалог ученик–ученик.

  1. Какое уравнение получили? – Это уравнение степени не выше второй.
  2. При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
  3. При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
  4. От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.

Ответ:

На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.

Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Исходное уравнение (1) равносильно

Далее докладчик задаёт вопросы, а учащиеся отвечают на них.

При каких условиях уравнение (1) имеет один корень?

  1. При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
  2. Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
  3. Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
  4. Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.

При каких условиях уравнение (1) имеет два корня?

Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.

При каких условиях уравнение (1) не имеет корней?

    Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?

  • Если одно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.

Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.

Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.

Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.

Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.

Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.

Значит уравнение (1) не имеет решений при p > 4.

Ответ:

  1. При p = 4, p ≤ 0 одно решение.
  2. При 0 4 нет решений.

На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.

Домашнее задание.

Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.

Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.

Задание 3. Выяснить при каких значениях a уравнение . имеет решения, найти эти решения.

Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.

Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 |x| в зависимости от параметра a.

Задачи с параметром

1. Задача.
При каких значениях параметра a уравнение ( a — 1) x 2 + 2 x + a — 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2 x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4 a 2 — 8 a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О <0; 1; 2>.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4 ax +8 a +3 = 0.
2. Решение.
Уравнение x 2 +4 ax +8 a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16 a 2 -4(8 a +3) > 0. Получаем (после сокращения на общий множитель 4) 4 a 2 -8 a -3 > 0, откуда

a Ц 7 2
или a > 1 +Ц 7 2

2. Ответ:

a О (- Ґ ; 1 –Ц 7 2
) И (1 +Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 ( x ) = 6 x — x 2 -6.
а) Постройте график функции f 1 ( x ) при a = 1.
б) При каком значении a графики функций f 1 ( x ) и f 2 ( x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 ( x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx + b и y = ax 2 + bx + c ( a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx + b = ax 2 + bx + c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6 x — x 2 -6 к нулю. Из уравнения 36-24-4 a = 0 получаем a = 3. Проделав то же самое с уравнением 2 x — a = 6 x — x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2 ax -3 a і 0 содержит отрезок [3;6].

4. Решение.
Первая координата вершины параболы f ( x ) = x 2 -2 ax -3 a равна x 0 = a . Из свойств квадратичной функции условие f ( x ) і 0 на отрезке [3;6] равносильно совокупности трех систем

м
н
о
a Ј 3,

f (3) = 9-9 a і 0,

м
н
о
3 a D = 4 a 2 +12 a Ј 0,м
н
о
a і 6,

f (6) = 36-15 a і 0.


Решением первой системы является множество (- Ґ ,1]. Вторая и третья система решений не имеют.

4. Ответ: a О (- Ґ ,1].

5. Задача (9 кл.)
При каком наименьшем натуральном значении a уравнение

x 2 +2 ax -3 a +7 = 2 x

имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2 a -2) x — 3 a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 + a -6 > 0. Решая неравенство, находим a a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции

f ( x ) =x 2 + | ax +2 | a -1
проходит через точку с координатами (-1;1).

6. Решение.
Из условия f (-1) = 1 имеем уравнение

1 =1+ | — a +2 | a -1
,
или, после очевидных преобразований, a -2 = | 2- a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О [2; Ґ ).

7. Задача (10 кл.)
При каких значениях a сумма квадратов корней уравнения

x 2 -2 ax + a 2 — a = 0
больше чем 12?

7. Решение.
Дискриминант уравнения x 2 -2 ax + a 2 — a = 0 равен 4 a . Поэтому действительные корни этого уравнения существуют, если a і 0. Применяя к данному уравнению теорему Виета получаем x 1 + x 2 = 2 a и x 1 · x 2 = a 2 — a . Отсюда x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 -2 x 1 · x 2 = 2 a 2 +2 a . Решениями неравенства 2 a 2 +2 a > 12, удовлетворяющими условию a і 0, являются числа a > 2.

Решение различных уравнений с параметрами.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

2.1 Линейные уравнения и уравнения

приводимые к линейным. 5

2.2. Квадратные уравнения и уравнения

2.4. Показательные и логарифмические

2.5. Тригонометрические уравнения…………….………..32

Задачам с параметром в программах по математике для неспециализированных школ отводится незначительное место. Может быть, обучать этому массового школьника вряд ли целесообразно, но сильных учащихся знакомить с такими примерами необходимо, ведь задачи с параметрами дают прекрасный материал для развития математической культуры, для настоящей исследовательской работы.

Перед началом учебного года на методическом объединении учителей математики нашего района проводится анкетирование и одним из вопросов является такой: «Какую тему, какой раздел школьного курса математики Вы хотели бы услышать на заседании методического объединения?». Подавляющее большинство учителей хотели бы услышать о задачах с параметрами. Это действительно один из труднейших разделов школьного курса математики. Здесь, кроме использования определенных алгоритмов решения уравнений или неравенств, приходится обдумывать, по какому признаку нужно разбить множество значений параметра на подмножества, следить за тем, чтобы не пропустить какие-либо тонкости. Здесь проверяется не «натасканность» ученика, а подлинное понимание им материала. При этом в части «с» ЕГЭ зачастую включает задания с параметрами, вызывающие определенные сложности, с повышенными требованиями к математической подготовке абитуриентов, уравнения и неравенства с параметрами часто включают в варианты письменных работ. На мой взгляд, чтобы «встреча» с параметром у учащегося произошла впервые не на выпускных или вступительных экзаменах, надо проводить линию параметров в школьном курсе математики параллельно соответствующим разделам. Она может быть где-то слегка намечена, где-то прорисована более явно, где-то углублена в зависимости от состояния класса, от методических взглядов учителя.

Знакомить учащихся с параметром я начинаю с 7-го класса. Первой ступенькой являются «Уравнения первой степени с одним неизвестным». В 8-м классе — «Линейные уравнения и неравенства с параметром, содержащие модуль».

В школьном курсе математики, квадратичная функция, будучи центральной, формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей — в основе их решения лежат свойства квадратичной функции. Поэтому следующей ступенькой являются «Уравнения с параметрами не выше второй степени». А затем задачи с параметрами, сводящиеся к квадратным уравнениям».

Интерес к этим темам объясняется тем, что уравнения с параметром предлагаются на школьных экзаменах за курс основной средней школы. Поэтому более близкое знакомство с параметром, чем это принято в обычной школе, становится не только желательным, но и необходимым.

В своей работе я хочу показать некоторые методы решения различных уравнения с параметрами.

1. Основные определения.

Рассмотрим уравнение , где — переменные величины.

Любая система значений переменных , , … , , при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных . Пусть — множество всех допустимых значений , — множество всех допустимых значений , и т.д., — множество всех допустимых значений , т.е. , , …, . Если из каждого из множеств , …, выбрать и зафиксировать по одному значению и подставить их в исходное уравнение, то получим уравнение относительно , т.е. уравнение с одним неизвестным.

Решение его зависит от выбранной нами системы значений и будет иметь определенное числовое значение при каждом таком выборе, следовательно, решение исходного уравнения относительно является функцией от . Если обозначить это решение через , то получим . Переменные , которые при решении исходного уравнения считаются постоянными, называются параметрами , а само исходное уравнение уравнением, содержащим параметры.

В дальнейшем параметры будут обозначаться буквами латинского алфавита: а неизвестные буквами .

Решить исходное уравнение — значит, указать, при каких значениях параметра существуют решения, и каковы они. В процессе решения уравнений существенную роль играют теоремы о равносильности.

Два уравнения, содержащие одни и те же параметры, называются равносильными если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.


источники:

http://repetitors.info/library.php?b=30

http://infourok.ru/reshenie_razlichnyh_uravneniy_s_parametrami.-430422.htm