При каких значениях параметра а уравнение функция

Задачи с параметром

1. Задача.
При каких значениях параметра a уравнение ( a — 1) x 2 + 2 x + a — 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2 x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4 a 2 — 8 a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О <0; 1; 2>.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4 ax +8 a +3 = 0.
2. Решение.
Уравнение x 2 +4 ax +8 a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16 a 2 -4(8 a +3) > 0. Получаем (после сокращения на общий множитель 4) 4 a 2 -8 a -3 > 0, откуда

a Ц 7 2
или a > 1 +Ц 7 2

2. Ответ:

a О (- Ґ ; 1 –Ц 7 2
) И (1 +Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 ( x ) = 6 x — x 2 -6.
а) Постройте график функции f 1 ( x ) при a = 1.
б) При каком значении a графики функций f 1 ( x ) и f 2 ( x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 ( x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx + b и y = ax 2 + bx + c ( a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx + b = ax 2 + bx + c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6 x — x 2 -6 к нулю. Из уравнения 36-24-4 a = 0 получаем a = 3. Проделав то же самое с уравнением 2 x — a = 6 x — x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2 ax -3 a і 0 содержит отрезок [3;6].

4. Решение.
Первая координата вершины параболы f ( x ) = x 2 -2 ax -3 a равна x 0 = a . Из свойств квадратичной функции условие f ( x ) і 0 на отрезке [3;6] равносильно совокупности трех систем

м
н
о
a Ј 3,

f (3) = 9-9 a і 0,

м
н
о
3 a D = 4 a 2 +12 a Ј 0,м
н
о
a і 6,

f (6) = 36-15 a і 0.


Решением первой системы является множество (- Ґ ,1]. Вторая и третья система решений не имеют.

4. Ответ: a О (- Ґ ,1].

5. Задача (9 кл.)
При каком наименьшем натуральном значении a уравнение

x 2 +2 ax -3 a +7 = 2 x

имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2 a -2) x — 3 a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 + a -6 > 0. Решая неравенство, находим a a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции

f ( x ) =x 2 + | ax +2 | a -1
проходит через точку с координатами (-1;1).

6. Решение.
Из условия f (-1) = 1 имеем уравнение

1 =1+ | — a +2 | a -1
,
или, после очевидных преобразований, a -2 = | 2- a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О [2; Ґ ).

7. Задача (10 кл.)
При каких значениях a сумма квадратов корней уравнения

x 2 -2 ax + a 2 — a = 0
больше чем 12?

7. Решение.
Дискриминант уравнения x 2 -2 ax + a 2 — a = 0 равен 4 a . Поэтому действительные корни этого уравнения существуют, если a і 0. Применяя к данному уравнению теорему Виета получаем x 1 + x 2 = 2 a и x 1 · x 2 = a 2 — a . Отсюда x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 -2 x 1 · x 2 = 2 a 2 +2 a . Решениями неравенства 2 a 2 +2 a > 12, удовлетворяющими условию a і 0, являются числа a > 2.

Уравнения с параметром

Разделы: Математика

Справочный материал

Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.

Если 1 – а = 0, т.е. а = 1, то х0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х.

если а = 5, то х = = ;

Дидактический материал

3. а = +

4. + 3(х+1)

5. =

6. =

Ответы:

  1. При а1 х =;
  1. При а3 х = ;
  1. При а1, а-1, а0 х = ;

при а = 1 х – любое действительное число, кроме х = 1

  1. При а2, а0 х = ;
  1. При а-3, а-2, а0, 5 х =
  1. При а + с0, с0 х = ;

Квадратные уравнения с параметром

Пример 1. Решить уравнение

х = –

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

a =

a =

Если а -4/5 и а 1, то Д > 0,

х =

х = – = –

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

В итоге4(а – 1)(а – 6) > 0
— 2(а + 1) 0
а 6
а > — 1
а > 5/9

6

Пример 3. Найдите значения а, при которых данное уравнение имеет решение.

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а(а – 4) 0

а(а – 4)) 0

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3аа 2 ) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + ха = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

Показательные уравнения с параметром

Пример 1.Найти все значения а, при которых уравнение

9 х – (а + 2)*3 х-1/х +2а*3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х , получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у, тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log32 , или х 2 – хlog32 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 32 – 4 х+1/х = а то х + 1/х = log3а, или х 2 – хlog3а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 32 – 4 > 0, или |log3а| > 2.

Если log3а > 2, то а > 9, а если log3а 9.

Пример 2. При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х1 = -3, х2 = а = >

а – положительное число.

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х — (5а-3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Ответ:

  1. 0 25/2
  2. при а = 1, а = -2,2
  3. 0 0, х1/4 (3)

х = у

Если а = 0, то –2у + 1 = 0
2у = 1
у = 1/2
х = 1/2
х = 1/4

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.

Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).

Пусть Д > 0 (а 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а х

Выражая х из (1) и подставляя в (2), получаем неравенство

2 – а > 1 – а (3)

Чтобы решить неравенство (3), построим графики функций у = 2 – а и у = 1 – а.

Решения неравенства (3) образуют промежуток (а0; 2), где а0 2

а0 =

Ответ: x + 9a 3 ) = x имеет ровно два корня.

  • Найдите, при каких значениях а уравнение log 2 (4 x – a) = x имеет единственный корень.
  • При каких значениях а уравнение х – log 3 (2а – 9 х ) = 0 не имеет корней.
  • Ответы:

      при а 16.06.2009

    Решение задач с параметрами, используя свойства квадратичной функции

    Решение задач с параметрами, используя свойства квадратичной функции

    Учитель математики

    Высшей категории

    Санкт-Петербург

    2006
    Введение

    Решение задач с параметрами является, пожалуй, самым трудным разделом курса элементарной математики, причем не только для школьников и абитуриентов, но и для учителей.

    Это объясняется тем, что основная стратегия математического образования в школе – это развитие умений и навыков решения определённого набора стандартных задач, в большинстве своём связанных с техникой алгебраических преобразований. При решении задач с параметрами приходится рассматривать различные случаи, при каждом из которых методы решения задачи часто существенно отличаются друг от друга. При этом следует чётко и последовательно следить за сохранением равносильности решаемых уравнений и неравенств с учётом области определения выражений, входящих в уравнение или неравенство, а также учитывать выполнимость производимых операций. К тому же необходимо, прежде всего, умение производить – порой довольно разветвлённые логические построения. Кроме того, арсенал стандартных преобразований должен быть существенно пополнен некоторыми специфическими преобразованиями.

    Задачи с параметрами представляют собой весьма широкое поле для полноценной математической деятельности, открывают перед учащимися значительное число эвристических приёмов общего характера, ценных для математического развития личности, применимых в исследованиях и на любом другом математическом материале.

    Задачи с параметрами показывают, насколько далеко оторвалась практика вступительных экзаменов от школы, насколько различимы требования, предъявляемые к выпускнику школы и требования, которые предъявляет к абитуриенту вуз.

    Будучи основной в школьном курсе математики, квадратичная функция, естественно формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей — в основе их решения лежат свойства y=ах2+bх+с.

    Фактически все важные свойства квадратичной функции определяются таблицей.

    Таблица 1

    xo

    a 0, y(0) >0, т. к. хо = — (b/2a), b=-2ахо,

    то b>0, т. к.y(0)=а·0 + b·0 +с = с, то с>0.

    Задание 2. Квадратное уравнение ах2 + bх + с = 0 не имеет действительных корней. Найдите знак с, если а+b+с -5 (1) -4/а + а – 2>-5(2)

    а это неравенство выполняется при а 0)

    хо = — а/6, исследуем по рисункам, если:

    1) 1 0, получим f(t) = t2-8at+7a2

    Найдем те значения параметра а, при которых наименьшее значение функции

    f(t) = t2-8at+7a2 отрицательно на отрезке [1/4; 1].

    Построим схематически рисунки, учитывая, что знак дискриминанта не имеет значения.

    Для каждого из трех случаев а), б), в) наименьшее значение функции f(t) = t2-8at+7a2

    на отрезке [1/4; 1] достигается соответственно в точках при х =1, х =2а, х =1/4. Тогда вопрос на ответ решение совокупности трех систем:

    1≤4а 1/4 (7√3)/12.

    Расположение корней квадратного трехчлена

    Рассмотрим ряд типичных задач, связанных с расположением корней квадратного трехчлена ах2+bх+с. Все рассуждения проведем, предполагая а>0. Если а к, х2 >к. Пусть f(х)= ах2+bх+с. График y= f(х) либо пересекает ось ОХ (D >0), либо касается ее (D =0). Тогда необходимо выполнить условие: хо>к, y(к) >0. Если а к, х2>к определяются системой неравенств:

    f(3) >0 9–18а+2–2а+9а2>0

    Задача №2. При каких условиях корни квадратного уравнения ах2+bх+с =0 лежат по разные стороны от некоторого заданного числа к?

    Сформулируем задачу следующим образом: при каких условиях число к лежит между корнями квадратного уравнения ах2+bх+с =0. Построим схематически график функции

    у= ах2+bх+с по условию задачи.

    Достаточно выполнить условие: y(к) 0.При а 0.

    Задание 12. Найдите все значения параметра а, при которых 1 лежит между корнями уравнения х2–2ах+3–4а+2а2=0.

    Т. к. старший коэффициент положителен, достаточно выполнить условие f(1) 0.

    Рис. 7

    Если для решения задачи эти два случая различать не нужно, то достаточно решить неравенство f(е) · f(к) 0

    Задача №4. При каких условиях оба корня (необязательно различные) квадратного уравнения ах2+bх+с лежат на отрезке [к; е]. Рассмотрим при условии а>0. Пусть есть функция f(х)= ах2+bх+с

    Требуемое условие равносильно системе неравенств:

    D≥0

    Задание 15. Найдите те значения параметра а, при которых все корни уравнения

    х2- 2(а–3)х–а +3=0 лежат в интервале (-3;0).

    При условии существования хотя бы одного корня график функции f(х)= х2- 2(а–3)х–а +3 может быть схематически расположен одним из двух способов

    D≥0 4(а – 3 )(а – 2) ≥0


    источники:

    http://urok.1sept.ru/articles/534897

    http://pandia.ru/text/78/525/58344.php