Приближенное значение корня нелинейного уравнения

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Приближенное значение корня нелинейного уравнения

    1. Приближенное решение нелинейных уравнений

    Пусть дано уравнение с одним неизвестным

    , (1.1)

    где f ( x ) — заданная алгебраическая или трансцендентная функция.

    Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная , логарифмическая, тригонометрические, обратные тригонометрические.

    Решить уравнение — значит найти все его корни, то есть те значения х , которые обращают уравнение в тождество, или доказать, что корней нет.

    В общем случае не существует формул, по которым определяются точные значения корней уравнения (1.1). Для отыскания корней используют приближенные методы, при этом корни находятся с некоторой заданной точностью ε . Это означает, что если x — точное значение корня уравнения, а x ’ — его приближенное значение с точностью ε , то | x — x ’ | ≤ ε . Если корень найден с точностью ε , то принято писать x = x ± ε .

    Будем предполагать, что уравнение (1.1) имеет лишь изолированные корни, то есть для каждого корня существует окрестность, не содержащая других корней этого уравнения.

    Приближенное решение уравнения состоит из двух этапов:

    1. Отделение корней, то есть нахождение интервалов из области определения функции f ( x ), в каждом из которых содержится только один корень уравнения (1).

    2. Уточнение корней до заданной точности.

    Отделение корней можно проводить графически и аналитически.

    Для того , чтобы графически отделить корни уравнения (1.1), строят график функции y = f ( x ). Абсциссы точек его пересечения с осью Ox есть действительные корни уравнения (рис. 1). Практически бывает удобнее заменить уравнение (1.1) равносильным ему уравнением

    , (1.2)

    где Φ( x ) и Ψ( x ) — более простые функции, чем f ( x ). Абсциссы точек пересечения графиков функций y = Φ( x ) и y = Ψ( x ) дают корни уравнения (1.2), а значит и исходного уравнения (1.1) (рис.2).

    Аналитическое отделение корней основано на следующей теореме: если непрерывная на отрезке [ a , b ] функция y = f ( x ) принимает на концах отрезка значения разных знаков, т.е. f ( a )· f ( b ) f ( x ) = 0; если при этом производная f ’ ( x ) сохраняет знак внутри отрезка [ a , b ], то корень является единственным.

    Уточнение корней заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Рассмотрим самый простой из них — метод половинного деления.

    Пусть корень отделён и принадлежит отрезку [ a , b ]. Находим середину отрезка [ a , b ] по формуле

    Если f ( c ) = 0, то с — искомый корень. Если f ( c ) ≠ 0, то в качестве нового отрезка изоляции корня [ a 1 , b 1 ] выбираем ту половину [ a , c ] или [ c , b ], на концах которой f ( x ) принимает значения разных знаков. Другими словами, если f ( a ) ∙ f ( c ) a , c ], если f ( a ) ∙ f ( c ) — отрезку [ c , b ]. Полученный отрезок снова делим пополам, находим c1 ,

    вычисляем f ( c 1 ), выбираем отрезок [ a 2 , b 2 ] и т.д. Длина каждого нового отрезка вдвое меньше длины предыдущего, то есть за n шагов отрезок сократится в 2 n раз. Как только будет выполнено условие

    то в качестве приближенного значения корня, вычисленного с точностью ε , можно взять

    Пример . Пусть требуется решить уравнение

    с точностью ε = 0,0001. Отделим корень графически. Для этого преобразуем уравнение к виду

    и построим графики функций (рис. 4):

    Из рисунка видно, что абсцисса точки пересечения этих графиков принадлежит отрезку [0; 1].

    Подтвердим аналитически правильность нахождения отрезка изоляции корня. Для отрезка [0; 1] имеем:

    . Следовательно, корень отделён правильно.

    Уточнение корня выполним методом половинного деления.

    Корень принадлежит отрезку

    Корень принадлежит отрезку

    Корень принадлежит отрезку

    Модуль 1. Модуль 1. Численные методы решения нелинейных уравнений. Нахождение арифметического корня натуральной степени с заданной точностью

    Модуль 1. Модуль 1. Численные методы решения нелинейных уравнений. Нахождение арифметического корня натуральной степени с заданной точностью.

    1. Численные методы решения нелинейных уравнений.

    1.1. Постановка задачи.

    1.2. Этапы приближенного решения нелинейных уравнений.

    1.3. Уточнение корней методом деления отрезка пополам.

    1.4. Уточнение корней методом касательных.

    1.5. Уточнение корней методом хорд.

    2. Нахождение арифметического корня натуральной степени с заданной точностью.

    Литература.

    1. Численные методы решения нелинейных уравнений.

    1.1. Постановка задачи.

    Пусть имеется уравнение вида

    где f (x) — заданная алгебраическая или трансцендентная функция. (Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная, логарифмическая, тригонометрические, обратные тригонометрические.)

    Решить уравнение — значит найти все его корни, то есть те значения x, которые обращают уравнение в тождество, или доказать, что корней нет.

    Если алгебраическое или трансцендентное уравнение достаточно сложно, то довольно редко удается точно найти его корни. Кроме того, в некоторых случаях уравнение может содержать коэффициенты, известные лишь приблизительно, поэтому сама задача о точном нахождении корней теряет смысл. В таких случаях применяют численные (приближенные) методы решения.

    Поставим задачу найти такое приближенное значение корня xпр, которое мало отличается от точного значения корня x*, так что выполняется неравенство │x*xпр │ 0, m – натуральное.

    Известен следующий рекуррентный (итерационный) процесс нахождения членов последовательности t0, t1, t2, …, где

    , n = 0, 1, 2, … . (6)

    При этом оказывается [4], что полученная последовательность сходится при любом t0>0 к точному значению и при том достаточно быстро.

    Удобно в качестве t0 брать значение с одной верной значащей цифрой, которую легко найти подбором.

    Итерационный процесс нахождения очередного приближения к величине корня прекращается, как только выполнится неравенство . При этом с точностью ε.

    Пример 5. Найти с точностью ε = 0,000001 (или ε = 10-6).

    Решение. Здесь a = 1,25, ε = 10-6. Пусть t0 = 1,1 (т. к. 1,12≈1,25). Из формулы (6) при m = 2 имеем:

    , n = 0, 1, 2, … .

    Значит . Так как требуется найти значение корня с точностью ε = 10-6, т. е. с шестью верными значащими цифрами после запятой, при вычислении t1 количество цифр после запятой берем с запасом (например, семь цифр).

    Аналогично вычисляем t2 = 1,1180339…; . Продолжаем итерационный процесс: t3 = 1,1180339… . Итак, на третьем шаге (итерации) результат в требуемых знаках (шесть цифр после запятой) повторился, т. е. .

    Значит, с точностью 10-6.

    3. Практикум.

    Численные методы решения нелинейных уравнений.

    В заданиях данной группы нужно выбрать правильные ответы из приведенного списка. Обратите внимание, что правильный ответ может быть не единственным. Вам надо указать через запятую буквы соответствующие правильным высказываниям.

    1. Какие из следующих функций являются трансцендентными?

    2. Поиск корней методом половинного деления применим к функциям:

    a) к многочленам любых степеней.

    b) к непрерывным, но не дифференцируемым функциям.

    c) к функциям, имеющим разрывы.

    d) любым непрерывным.

    3. Отметьте высказывания, относящиеся к поиску корней методом половинного деления:

    a) Существуют уравнения, для которых есть только численное решение и нет аналитического.

    b) Это самый быстрый метод поиска корней.

    c) Это самый точный метод.

    d) Это один из самых простых вычислительных методов поиска корней уравнения

    e) Этот метод не требует дополнительных условий сходимости.

    f) Этим методом можно искать корни многочленов любых степеней.

    В заданиях данной группы нужно выбрать правильный ответ из приведенного списка. Обратите внимание, что правильный ответ должен быть единственным

    4. Решить уравнение, значит

    a) найти такие значения неизвестного, которые при подстановке в уравнение, обращают его в тождество;

    b) доказать, что таких значений неизвестного, которые при подстановке в уравнение, обращают его в тождество нет;

    c) найти такие значения неизвестного, которые при подстановке в уравнение, обращают его в тождество или доказать, что корней нет;

    d) найти такие значения неизвестного, которые при подстановке в уравнение, обращают его в верное тождество и доказать, что корней нет.

    5. Для какой из приведенных ниже функций y = f(x) уравнение f(x) = 0 не имеет корней

    6. Отделение корней уравнения f(x)=0 – это

    a) нахождение интервалов длиной ε из области определения функции y=f(x);

    b) нахождение корней из области определения функции y=f(x);

    c) нахождение интервалов с одним корнем вне области определения функции y=f(x);

    d) нахождение интервалов из области определения, в каждом из которых содержится ровно один корень.

    7. Какая из этих формул верна и применяется в методе деления отрезка пополам для определения достижения точности?

    8. Какая из этих формул верна и применяется в методе деления отрезка пополам для определения X – приближённого значение корня на отрезке [a; b]?

    9. Аналитическое отделение корней уравнения f(x) = 0 основано на теореме:

    a) если функция f(x) непрерывна на [a, b], принимает на концах отрезка значения разных знаков, то на этом отрезке содержится хотя бы один корень;

    b) если f ‘(x) существует и непрерывна, то на этом отрезке содержится хотя бы один корень;

    c) если функция f(x) принимает на концах отрезка [a, b] значения разных знаков, то на этом отрезке содержится хотя бы один корень;

    d) если f ‘(x) непрерывна и меняет знак на [а, b], то на этом отрезке содержится хотя бы один корень.

    10. Необходимым условием сходимости метода касательных при решении уравнения у = f(x) является:

    a) f(x) непрерывна на [a, b] и сохраняет на нем свой знак;

    b) f ‘(x) существует и сохраняет знак;

    c) f(x) и f ‘(x) непрерывны на [a, b] и сохраняют знак;

    d) f(x) непрерывна и меняет знак на отрезке [a, b], f ‘(x) непрерывна и сохраняет знак на отрезке [a, b].

    11. Укажите интервал изоляции корня уравнения .

    12. Какому графику соответствуют условия , , , , ?

    13. Известно, что уравнение имеет три корня. Минимальное количество начальных точек, определяющих отрезки изоляции корней, для полного решения методом половинного деления:

    В заданиях данной группы нужно вписать числовой ответ или дополнить предложение.

    14. Дано нелинейное уравнение x2sinx + 1 = 0 и начальное приближение x0 = 3,3. Первое приближение x1 в методе Ньютона равно (ответ округлить до трех знаков после запятой) ____________.

    15. Дано уравнение x2sinx + 1 = 0. Известно, что на отрезке [3,2; 3,5] существует единственный корень уравнения. После выполнения одного шага методом деления отрезка пополам, отрезок станет равен _____________________________.


    источники:

    http://dit.isuct.ru/IVT/sitanov/Literatura/M866/Glava1.htm

    http://pandia.ru/text/80/140/28639.php