Приближенное значение корня нелинейного уравнения методом

Численные методы решения нелинейных уравнений. Метод хорд.

Численные методы решения нелинейных уравнений. Метод хорд.

Метод хорд ( метод также известен как Метод секущих ) один из методов решения нелинейных уравнений и основан на последовательном сужении интервала, содержащего единственный корень уравнения . Итерационный процесс выполняется до того момента, пока не будет достигнута заданная точность .

В отличие от метода половинного деления, метод хорд предлагает, что деление рассматриваемого интервала будет выполняться не в его середине, а в точке пересечения хорды с осью абсцисс (ось — Х). Следует отметить, что под хордой понимается отрезок, который проведен через точки рассматриваемой функции по концам рассматриваемого интервала. Рассматриваемый метод обеспечивает более быстрое нахождение корня, чем метод половинного деления, при условии задания одинакового рассматриваемого интервала.

Геометрически метод хорд эквивалентен замене кривой хордой, проходящей через точки и (см. рис.1.).

Рис.1. Построение отрезка (хорды) к функции .

Уравнение прямой (хорды), которая проходит через точки А и В имеет следующий вид:

Данное уравнение является типовым уравнением для описания прямой вы декартовой системе координат. Наклон кривой задается по ординате и абсциссе с помощью значений в знаменателе и , соответственно.

Для точки пресечения прямой с осью абсцисс записанное выше уравнение перепишется в следующем виде:

В качестве нового интервала для прохождения итерационного процесса выбираем один из двух или , на концах которого функция принимает значения разных знаков. Противоположность знаков значений функции на концах отрезка можно определить множеством способов. Один из множества этих способов — умножение значений функции на концах отрезка и определение знака произведения путём сравнения результата умножения с нулём:

или .

Итерационный процесс уточнения корня заканчивается, когда условие близости двух последовательных приближений станет меньше заданной точности, т.е.

.

Рис.2. Пояснение к определению погрешности расчета.

Следует отметить, что сходимость метода хорд линейная, однако более быстрая, чем сходимость метода половинного деления.

Алгоритм нахождения корня нелинейного уравнения по методу хорд

1. Найти начальный интервал неопределенности одним из методов отделения корней. З адать погрешность расчета (малое положительное число ) и начальный шаг итерации ( ) .

2. Найти точку пересечения хорды с осью абсцисс:

3. Необходимо найти значение функции в точках , и . Далее необходимо проверить два условия:

— если выполняется условие , то искомый корень находится внутри левого отрезка положить , ;

— если выполняется условие , то искомый корень находится внутри правого отрезка принять , .

В результате находится новый интервал неопределенности, на котором находится искомых корень уравнения:

4. Проверяем приближенное значение корня уравнения на предмет заданной точности, в случае:

— если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается. Приближенное значение корня определяется по формуле:

— если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.

Пример решения уравнений методом хорд

В качестве примера, рассмотрим решение нелинейного уравнения методом хорд. Корень необходимо найти в рассматриваемом диапазоне с точностью .

Вариант решения нелинейного уравнения в программном комплексе MathCAD .

Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.1).

Рис.1. Результаты расчета по методу хорд

Для обеспечения заданной точности при поиске уравнения в диапазоне необходимо выполнить 6 итераций. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .

Примечание:

Модификацией данного метода является метод ложного положения ( False Position Method ), который отличается от метода секущих только тем, что всякий раз берутся не последние 2 точки, а те точки, которые находятся вокруг корня.

Следует отметить, что в случае если от нелинейной функции можно взять вторую производную алгоритм поиска может быть упрощен. Предположим, что вторая производная сохраняет постоянный знак, и рассмотрим два случая:

Случай №1: 0,

f»(a)>0″ width=»158″ height=»20″ border=»0″ />

Из первого условия получается, что неподвижной стороной отрезка является – сторона a .

Случай №2: 0″ width=»158″ height=»20″ border=»0″ />

Из второго условия получается, что неподвижной стороной отрезка является – сторона b .

В общем виде, для выявления неподвижного конца можно записать следующее условие: 0″ width=»122″ height=»20″ border=»0″ /> , где или .

Рис. 3. Примеры убывающей или возрастающей функции

Таким образом, в зависимости от вида функции получаются два выражения для упрощения поиска корня функции:

— если функция соответствует первому случаю (см. рис. 3), тогда формула будет иметь следующий вид:

, где k =0,1,2,…

— если функция соответствует второму случаю (см. рис. 3), тогда формула будет иметь следующий вид:

, где k =0,1,2,…

Случай сводится к рассматриваемому , если уравнение записать в форме: .

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Модуль 1. Модуль 1. Численные методы решения нелинейных уравнений. Нахождение арифметического корня натуральной степени с заданной точностью

    Модуль 1. Модуль 1. Численные методы решения нелинейных уравнений. Нахождение арифметического корня натуральной степени с заданной точностью.

    1. Численные методы решения нелинейных уравнений.

    1.1. Постановка задачи.

    1.2. Этапы приближенного решения нелинейных уравнений.

    1.3. Уточнение корней методом деления отрезка пополам.

    1.4. Уточнение корней методом касательных.

    1.5. Уточнение корней методом хорд.

    2. Нахождение арифметического корня натуральной степени с заданной точностью.

    Литература.

    1. Численные методы решения нелинейных уравнений.

    1.1. Постановка задачи.

    Пусть имеется уравнение вида

    где f (x) — заданная алгебраическая или трансцендентная функция. (Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная, логарифмическая, тригонометрические, обратные тригонометрические.)

    Решить уравнение — значит найти все его корни, то есть те значения x, которые обращают уравнение в тождество, или доказать, что корней нет.

    Если алгебраическое или трансцендентное уравнение достаточно сложно, то довольно редко удается точно найти его корни. Кроме того, в некоторых случаях уравнение может содержать коэффициенты, известные лишь приблизительно, поэтому сама задача о точном нахождении корней теряет смысл. В таких случаях применяют численные (приближенные) методы решения.

    Поставим задачу найти такое приближенное значение корня xпр, которое мало отличается от точного значения корня x*, так что выполняется неравенство │x*xпр │ 0, m – натуральное.

    Известен следующий рекуррентный (итерационный) процесс нахождения членов последовательности t0, t1, t2, …, где

    , n = 0, 1, 2, … . (6)

    При этом оказывается [4], что полученная последовательность сходится при любом t0>0 к точному значению и при том достаточно быстро.

    Удобно в качестве t0 брать значение с одной верной значащей цифрой, которую легко найти подбором.

    Итерационный процесс нахождения очередного приближения к величине корня прекращается, как только выполнится неравенство . При этом с точностью ε.

    Пример 5. Найти с точностью ε = 0,000001 (или ε = 10-6).

    Решение. Здесь a = 1,25, ε = 10-6. Пусть t0 = 1,1 (т. к. 1,12≈1,25). Из формулы (6) при m = 2 имеем:

    , n = 0, 1, 2, … .

    Значит . Так как требуется найти значение корня с точностью ε = 10-6, т. е. с шестью верными значащими цифрами после запятой, при вычислении t1 количество цифр после запятой берем с запасом (например, семь цифр).

    Аналогично вычисляем t2 = 1,1180339…; . Продолжаем итерационный процесс: t3 = 1,1180339… . Итак, на третьем шаге (итерации) результат в требуемых знаках (шесть цифр после запятой) повторился, т. е. .

    Значит, с точностью 10-6.

    3. Практикум.

    Численные методы решения нелинейных уравнений.

    В заданиях данной группы нужно выбрать правильные ответы из приведенного списка. Обратите внимание, что правильный ответ может быть не единственным. Вам надо указать через запятую буквы соответствующие правильным высказываниям.

    1. Какие из следующих функций являются трансцендентными?

    2. Поиск корней методом половинного деления применим к функциям:

    a) к многочленам любых степеней.

    b) к непрерывным, но не дифференцируемым функциям.

    c) к функциям, имеющим разрывы.

    d) любым непрерывным.

    3. Отметьте высказывания, относящиеся к поиску корней методом половинного деления:

    a) Существуют уравнения, для которых есть только численное решение и нет аналитического.

    b) Это самый быстрый метод поиска корней.

    c) Это самый точный метод.

    d) Это один из самых простых вычислительных методов поиска корней уравнения

    e) Этот метод не требует дополнительных условий сходимости.

    f) Этим методом можно искать корни многочленов любых степеней.

    В заданиях данной группы нужно выбрать правильный ответ из приведенного списка. Обратите внимание, что правильный ответ должен быть единственным

    4. Решить уравнение, значит

    a) найти такие значения неизвестного, которые при подстановке в уравнение, обращают его в тождество;

    b) доказать, что таких значений неизвестного, которые при подстановке в уравнение, обращают его в тождество нет;

    c) найти такие значения неизвестного, которые при подстановке в уравнение, обращают его в тождество или доказать, что корней нет;

    d) найти такие значения неизвестного, которые при подстановке в уравнение, обращают его в верное тождество и доказать, что корней нет.

    5. Для какой из приведенных ниже функций y = f(x) уравнение f(x) = 0 не имеет корней

    6. Отделение корней уравнения f(x)=0 – это

    a) нахождение интервалов длиной ε из области определения функции y=f(x);

    b) нахождение корней из области определения функции y=f(x);

    c) нахождение интервалов с одним корнем вне области определения функции y=f(x);

    d) нахождение интервалов из области определения, в каждом из которых содержится ровно один корень.

    7. Какая из этих формул верна и применяется в методе деления отрезка пополам для определения достижения точности?

    8. Какая из этих формул верна и применяется в методе деления отрезка пополам для определения X – приближённого значение корня на отрезке [a; b]?

    9. Аналитическое отделение корней уравнения f(x) = 0 основано на теореме:

    a) если функция f(x) непрерывна на [a, b], принимает на концах отрезка значения разных знаков, то на этом отрезке содержится хотя бы один корень;

    b) если f ‘(x) существует и непрерывна, то на этом отрезке содержится хотя бы один корень;

    c) если функция f(x) принимает на концах отрезка [a, b] значения разных знаков, то на этом отрезке содержится хотя бы один корень;

    d) если f ‘(x) непрерывна и меняет знак на [а, b], то на этом отрезке содержится хотя бы один корень.

    10. Необходимым условием сходимости метода касательных при решении уравнения у = f(x) является:

    a) f(x) непрерывна на [a, b] и сохраняет на нем свой знак;

    b) f ‘(x) существует и сохраняет знак;

    c) f(x) и f ‘(x) непрерывны на [a, b] и сохраняют знак;

    d) f(x) непрерывна и меняет знак на отрезке [a, b], f ‘(x) непрерывна и сохраняет знак на отрезке [a, b].

    11. Укажите интервал изоляции корня уравнения .

    12. Какому графику соответствуют условия , , , , ?

    13. Известно, что уравнение имеет три корня. Минимальное количество начальных точек, определяющих отрезки изоляции корней, для полного решения методом половинного деления:

    В заданиях данной группы нужно вписать числовой ответ или дополнить предложение.

    14. Дано нелинейное уравнение x2sinx + 1 = 0 и начальное приближение x0 = 3,3. Первое приближение x1 в методе Ньютона равно (ответ округлить до трех знаков после запятой) ____________.

    15. Дано уравнение x2sinx + 1 = 0. Известно, что на отрезке [3,2; 3,5] существует единственный корень уравнения. После выполнения одного шага методом деления отрезка пополам, отрезок станет равен _____________________________.


    источники:

    http://math.semestr.ru/optim/newton.php

    http://pandia.ru/text/80/140/28639.php