Применение определителя к решению системы уравнения

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

. (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Пример 5. Решить систему линейных уравнений методом Крамера:

.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Применение определителей к исследованию и решению системы линейных уравнений.

Рассмотрим систему n линейных уравнений с n неизвестными:

1) Если определитель системы

то система имеет единственное решение, определяемое формулами Крамера:

хi = ,

где Δ хi – определитель, полученный из Δ заменой элементов i столбца на столбец свободных членов.

2) Если Δ = 0, а среди определителей Δ хi есть не равные нулю, то система не имеет решения.

3) Если Δ = Δ х1=Δ х2=. . .=Δ хk = 0 , причем один из миноров (п – 1) –го порядка определителя Δ не равен нулю. Тогда система сводится к п – 1 уравнениям; в этом случае одно из уравнений есть следствие остальных. Одному из неизвестных можно дать произвольное значение. Остальные неизвестные определяются единственным образом из системы п – 1 уравнений.

Пример 1: Решить систему уравнений:

2х – 3у = 7,

Здесь Δ = 7; Δх = 14; Δу = — 7.

Δ ≠ 0, следовательно система имеет единственное решение, определяемое формулами Крамера:

хi = .

Тогда х = = 2, у = = -1.

Пример 2: Решить систему уравнений:

Здесь Δ = 11, Δх = 11,Δу = 55 ,Δz = -22.

Δ ≠ 0, следовательно система имеет единственное решение, определяемое формулами Крамера:

хi = .

Тогда х = = 1, у = = 5, z = = -2.

Пример 3: Решить систему уравнений:

Здесь Δ = Δ х1=Δ х2=. . .=Δ хk = 0.

Вычеркнув четвертую строку и четвертый столбец, получим минор

1 -1 2

2 3 0

Система сводится к трем уравнениям:

х1 — х2 + 2х3х4 = 1,

Четвертое уравнение есть их следствие. Неизвестному х4 можно дать любое значение. Из последней системы находим:

х1 = , х2 = , х3 = .

Ответ: <(х1, х2, х3, х4)| х4 R, х1 = , х2 = , х3 = >.

127. Решить систему уравнений методом последовательного исключения неизвестных:

a) -3х1 + 2х2 – 4х3 + х4 = -7, -5х1 – 3х3 + 2х4 = -6, х1 – 3х2х3 + 4х4 = 7, 2х1 + 5х2 + 3х4 = 0;b) 5х1 3х2 + 7х3 + х4 = 5, х1 + х2 – 5х3 + 3х4 = -7, 3х1х2 + х3 + 2х4 = 1, 2х1 – 3х3 + х4 = 2.

128. Решить систему уравнений методом последовательного исключения неизвестных:

а) х1– 5х2 + х3 – 3х4 = -4, -4х1 + 2х2 + 3х3 + х4 = 5, 2х1 + х2 – 4х4 = 8, —х1 + 6х2 – 2х3 + х4 = 6;b) 2х1х2 + х3 – 2х4 = -3, 3х1 + 2х2х3 – 4х4 = -7, х1 – 3х2 + 2х4 = -2, -2х1 + 3х3х4 = 7.

129. Решить систему уравнений методом последовательного исключения неизвестных:

а) -2х1х2 + 3х3х4 = 0, 3х1 – 4х3 + 2х4 = 4, х1 + 3х2+2х3х4 = 5, -4х1 – 5х2 + х3 +3х4 = -2;b) 2х1х2 – 3х3 + х4 = 0, —х1 + 5х2 + х3 + 2х4 = 12, х1 + 4х2 – 2х3 + 3х4 = 3, 3х1 + х3 – 5х4 = 0.

130. Решить систему уравнений методом последовательного исключения неизвестных:

а) х1– 2х2 + 3х3 – 4х4 = 6, 2х1 + х2 – 4х3 – 3х4 = 2, 3х1 + 4х2х3 + 2х4 = 8, -4х1 – 3х2 + 2х3 +х4 = 2;b) х1+ 5х2 – 2х3 + 3х4 = -1, —х1 + 4х2 + 3х3 + 2х4 = -8, х1 – 7х3 – 3х4 = 2, 3х1 – 2х2 + х3х4 = 4.

131. Решить систему уравнений методом последовательного исключения неизвестных:

а) х1+ 3х2 – 5х3 – 2х4 = -10, 2х1х2 + 3х3 + х4 = -2, х1 + 2х2 – 2х3х4 = -6, х2 – 2х3 + 3х4 = 1;b) 2х1– 3х2 + х3 – 4х4 = 9, —х1 – 2х2 + 3х3 + х4 = 8, 3х1х2 + 2х3 – 2х4 = 11, х1 + 4х2х3 + 3х4 = -6.

132. Решить систему уравнений методом последовательного исключения неизвестных:

а) 3х1х2 + 2х3 + х4 = 1, 2х1 + 3х2 + 4х3 – 2х4 = 3, х1 + 5х2 + 3х3х4 = 4, — х1 – 2х3 + 3х4 = 2;b) -2х1+ 4х2 – 3х3 + 5х4 = -5, 3х1 – 2х2 + х3 – 4х4 = 8, 4х1 + х2 – 2х3 + 3х4 = 6, -5х1 – 3х2х4 = 6.

133. Решить систему уравнений:

а) -3х + 2у = -1,b ) — 7х – 12 у = -2,
-5х + 4у = -5;5х + 3 у = 7.

134. Решить систему уравнений:

а) х + 2 у = 3, b) 9х + 2 у = 6,
-3х — 13 у = 5;-5х + у = 3.

135. Решить систему уравнений:

а) — 7х + 2 у = 5, b) 13х – 3 у = 1,
8ху = 2;-7х + 5 у = -13.

136. Решить систему уравнений:

а) х + 2у – 4z = 7,b) -3х +у – 5z = 1,
2х + у – 3z = -5,х + 7у – 3z = -5,
3х – 3уz = -6;4х – 2уz = -9.

137. Решить систему уравнений:

а) -3х + 2у – 4z = 15,b) — х – 2у + 4z = 3,
-5х + у – 3z = 4,6х + 5у – 3z = -18,
х – 3уz = 16;х + 3у – 7z = 3.

138. Решить систему уравнений:

а) 8х + у – 4 z = -3,b) х + 6у – 7z = 4,
5х + 4уz = 0,11х + у – 6z = -9,
х + 3у – 2z = 4;2х – 5у + z = -13.

139. Решить систему уравнений:

а) х1х2 + 3х3х4 = 6, 3х1 – 2х3 + 2х4 = 4, х1 + 3х2+2х3х4 = 1, — х1 – 5х2 + х3 +3х4 = 4;b) 2х1х2 – 3х3 + х4 = -13, —х1 + 5х2 + х3 – 8х4 = 5, х1 + 4х2 – 2х3 + 5х4 = -8, 3х1 + х3 – 5х4 = -3.

140. Решить систему уравнений:

а) 5х1+ х2 – 2х3 – 9х4 = 9, 3х1х3 + 7х4 = 5, -2х1 + 3х2 + х3 + 2х4 = -4, -4х1 + х2 – 2х3 + 5х4 = 0;b) х1– 2х2х3 + 5х4 = 12, -2х1 + 3х2 + 6х3 + х4 = -6, х1 – 7х2 + 2х3 + х4 = 1, 3х1 + х2 – 2х4 = -1.

Глава 3. Теория пределов

§1.Предел функции

Определение предела функции

Число b называется пределом функции у = f(x) при х → + , если, каково бы ни было положительное число ε, можно найти такое число N, что для всех х, больших N, выполняется неравенство

f(x) – b. Так как мы рассматриваем предел функции при х → + , то x можно считать положительным. Поэтому неравенство выполняется для всех x > . Итак число N равно . А это значит, что

= 7.

Число b называется пределом функции у = f(x) при хх0, если, каково бы ни было положительное число ε, можно найти такие числа M и N (N 4 = 81;

= 2 · = 2 · (-3) 3 = 2 · (-27) = -54.

Замечая, что 1 = 1, получим = 81 – 54 – 1 = 26.

Пример 2. Найти .

Нахождение предела этой дроби сводится к раскрытию неопределенности . Для этого преобразуем дробь, разложив числитель и знаменатель на множители:

= .

Разделим числитель и знаменатель дроби на х – 4. Это сокращение допустимо, так как при разыскании предела рассматриваются значения х ≠ 4. Итак, для всех значений х ≠ 4 имеет место тождество = . Поэтому пределы этих функций равны между собой:

= = = = .

Пример 3. Найти .

В этом случае имеет место неопределенность вида . Для того чтобы найти предел данной дроби, преобразуем ее разделив числитель и знаменатель на х 3 ; дробь от этого не изменит своей величины, а следовательно, и своего предела. Получим:

= = = .

Применение определителя к решению системы уравнения

§ 186. Применение определителей к исследованию и решению системы уравнений

Определители впервые были введены для решения системы уравнений первой степени. В 1750 г. швейцарский математик Крамер дал общие формулы, выражающие неизвестные через определители, составленные из коэффициентов системы. Примерно через сто лет теория определителей, выйдя далеко за пределы алгебры, стала применяться во всех математических науках.

В нижеследующих параграфах даны основные сведения об исследовании и решении систем уравнений первой степени; для большей наглядности всюду указывается связь с геометрическими фактами.

© 2022 Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт


источники:

http://lektsia.com/5×8725.html

http://scask.ru/j_dict_math.php?id=190