Применение показательных уравнений на практике

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.

Показательные уравнения — алгоритмы и примеры вычисления

Показательные уравнения, как и любые другие, требуют поиска неизвестной переменной. Особенность в том, что она или выражение с ней находится в показателе степени.

Основные понятия и свойства

В показательных уравнениях, которые часто называют степенными, в основании находятся исключительно числа. Переменная же есть только в показателе.

Она может быть одна или являться частью выражения. Если она появляется в другом месте, приходится иметь дело с уравнениями смешанного типа.

Школьники знакомятся с простыми вычислениями уже в 7 классе, более сложные решают выпускники и студенты вузов. Если фигурирует несколько переменных и представлено больше одного уравнения, говорят об их системе.

Тогда необходимо выразить одну неизвестную через другую и искать результат методом подстановки. Поэтому умение находить значения, в которые возводят натуральные числа, пригодится на долгие годы.

Изучаются также и показательные функции: она может быть восходящей и нисходящей, в зависимости от значения переменной или выражения.

2 x = 4 – показательное уравнение с иксом в степени;

2 x = x + 12 – смешанное, ведь икс находится также и в основании.

2 – основание, оно должно соответствовать двум условиям, а именно: быть больше нуля и отличаться от единицы;

Если вместо знака «=» используются обозначения «>», « 1 = 9. Если же возвести число в степень ноль, то результат всегда будет одинаковым, а именно, равным единице: 9 0 = 1.

2. Если математическое выражение возводится в отрицательное значение, то его можно заменить дробью, где числитель – единица, а знаменатель первоначальное выражение, но уже в положительной степени. Числитель – значение, находящееся над чертой, знаменатель – под ней. Математически правило записывается в следующем виде:

3. Чтобы возвести число в степень, нужно умножить его на себя такое количество раз, которое равно ее значению, то есть р 5 = р·р·р·р·р.

4. Если нужно умножить два положительных числа, отличных от единицы и равных между собой, то нужно сложить их показатели и возвести в полученное значение основание: p 5 ·p 3 = p 5+3 = p 8 .

5. Когда требуется разделить одно число на другое, имеющие отличные показатели, нужно вычесть из одного другой и возвести в полученное значение неизменное основание: p 9 /p 3 = p 9-3 = p 6 .

6. Если необходимо возвести одну степень в другую, то нужно их перемножить. Само основание при этом остается без изменений. Его нужно возвести в полученное после арифметических действий значение: (p 3 ) 4 = p 3*4 = p 12 .

Применение свойств и правил помогает упростить выражения, быстрее произвести вычисления и получить результат.

Примеры решения показательных уравнений

Закрепить материал помогут подробные объяснения при решении показательных уравнений. Разъяснения на практике помогут изучить сложные моменты и облегчат усвоение знаний.

Задание 1

Упростить и решить уравнение: 5 3x+14 = 5 7+2x

В обеих частях примера одинаковые основания, значит, можно приравнять математические выражения, находящиеся в показателе. В результате получится:

Путем переноса чисел в одну часть, а переменных в другую, не сложно решить пример. Главное, не забывать менять знак на противоположный, плюс на минус и наоборот:

Задание 2

Выполнить вычисление и найти х:

Основания обеих частей примера – 4, оно не меняется, следовательно, можно воспользоваться изученными свойствами и получить простейшее уравнение:

Задание 3

Упростить и найти значение х:

Дроби в примере разные. Поэтому приравнять их показатели сразу не получится. Но стоит обратить внимание, что числитель одной равен знаменателю другой и наоборот.

Чтобы решить, придется вспомнить о правиле возведения в отрицательную степень, когда выражение представляется в виде дроби. Значит, числитель можно поменять местами со знаменателем.

В показателе при этом появится знак «минус»:

При равных основаниях приравниваются степени: -х = 2х + 3.

Далее придется выполнить простое задание, чтобы найти неизвестную переменную:

Задание 4

Вычислить: (3 x ) 2 = 81.

Можно представить в следующем виде: (3 x ) 2 = 3 4 .

Если воспользоваться изученными свойствами, получается: 3 2x = 3 4 .

Далее выполнить простые действия, чтобы получить результат:

Задание 5

Решить уравнение: 5 x+1 + 7·5 x-2 = 132.

Если воспользоваться свойством степеней, применяемых для умножения значений с одинаковым основанием, можно преобразовать уравнение. Общий множитель прежде всего нужно поставить за скобки, это правило регулярно применяется при решении:

5 x-2 (5 3 + 7) = 132;

Если обе части уравнения разделить или умножить на одно и то же число, результат не изменится. В данном случае необходимо разделить на число 132. Это помогает избавиться от громоздких вычислений, удлиняющих ход решения:

Далее необходимо вспомнить, что любое значение, возведенное в ноль, равно единице:

Остается только приравнять показатели и решить элементарный пример:

Задание 6

Решить показательное уравнение √4 x = 16.

Квадратный корень можно заменить степенью 1/2. Получается, что 4 имеет показатель x/2.

Значит, уравнение преобразуются в следующее:

А дальше необходимо действовать по уже проверенному и закрепленному методу:

Чтобы быстро решать показательные уравнения, нужно знать свойства степеней и умело ими пользоваться на практике. Это позволит легко находить неизвестные переменные. Полученные знания обязательно пригодятся для вычисления более сложных задач.

Существуют онлайн калькуляторы, позволяющие легко и просто решить степенные уравнения. Требуется просто вписать их в ячейку и немного подождать, пока машина справится с подсчетами. Но гораздо интереснее самому произвести арифметические действия и получить верный результат.

Интернет не всегда есть под рукой, а подобные примеры – основа решения более трудных задач, которые могут встретиться на экзамене ЕГЭ по математике. Например, логарифмических. Они могут содержать тригонометрические элементы и объемные алгебраические конструкции.

Показательные уравнения и неравенства с примерами решения

Содержание:

Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:

Уравнения такого вида принято называть показательными.

Решении показательных уравнений

При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.

Пусть

Каждому значению показательной функции соответствует единственный показатель s.

Пример:

Решение:

Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению

Пример:

Решение:

а) Данное уравнение равносильно (поясните почему) уравнению

Если степени с основанием 3 равны, то равны и их показатели:

Решив это уравнение, получим

Ответ:

При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.

Пример:

Решение:

а) Данное уравнение равносильно уравнению

Решая его, получаем:

Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. откуда находим

б) Разделив обе части уравнения на получим уравнение равносильное данному. Решив его, получим

Ответ:

При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.

Пример:

Решить уравнение

Решение:

Обозначим тогда

Таким образом, из данного уравнения получаем

откуда находим:

Итак, с учетом обозначения имеем:

При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.

Пример:

Решить уравнение

Решение:

Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).

Пример:

Решить уравнение

Решение:

Пример:

При каком значении а корнем уравнения является число, равное 2?

Решение:

Поскольку х = 2 — корень, то верно равенство

Решив это уравнение, найдем

Ответ: при

Показательные уравнения и их системы

Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества:

Приведем методы решения некоторых типов показательных уравнений.

1 Приведение к одному основанию.

Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду . Отсюда

Пример №1

Решите уравнение

Решение:

Заметим, что и перепишем наше уравнение в виде

Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.

Пример №2

Решить уравнение

Решение:

Переходя к основанию степени 2, получим:

Согласно тождеству (2), имеем

Последнее уравнение равносильно уравнению 4х-19 = 2,5х.

2 Введение новой переменной.

Пример №3

Решить уравнение

Решение:

Применив тождество 2, перепишем уравнение как

Введем новую переменную: Получим уравнение

которое имеет корни Однако кореньне удовлетворяет условию Значит,

Пример №4

Решить уравнение

Решение:

Разделив обе части уравнения на получим:

последнее уравнение запишется так:

Решая уравнение, найдем

Значение не удовлетворяет условию Следовательно,

Пример №5

Решить уравнение

Решение:

Заметим что Значит

Перепишем уравнение в виде

Обозначим Получим

Получим

Корнями данного уравнения будут

Следовательно,

III Вынесение общего множителя за скобку.

Пример №6

Решить уравнение

Решение:

После вынесения за скобку в левой части , а в правой , получим Разделим обе части уравнения на получим

Системы простейших показательных уравнений

Пример №7

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей

системе :Отсюда получим систему

Очевидно, что последняя система имеет решение

Пример №8

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей системе: Последняя система, в свою очередь, равносильна системе:

Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Подставив полученное значение во второе уравнение, получим

Пример №9

Решите систему уравнений:

Решение:

Сделаем замену: Тогда наша система примет вид:

Очевидно, что эта система уравнений имеет решение

Тогда получим уравнения

Приближенное решение уравнений

Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть . Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое (читается как «кси»), что

Это утверждение проиллюстрировано на следующем чертеже.

Рассмотрим отрезок содержащий лишь один корень уравнения .

Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности

  1. вычисляется значение f(х) выражения
  2. отрезок делится пополам, то есть вычисляется значение
  3. вычисляется значение выражения f(х) в точке
  4. проверяется условие
  5. если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что (левый конец отрезка переходит в середину);
  6. если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
  7. для нового отрезка проверяется условие
  8. если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.

Метод последовательного деления пополам проиллюстрирован на этом чертеже:

Для нахождения интервала, содержащего корень уравнения вычисляются значения

Оказывается, что для корня данного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые и удовлетворяющие неравенству

Пример №10

Найдите интервал, содержащий корень уравнения

Решение:

Поделив обе части уравнения на 2 , получим,

Так как, для нового уравнения

Значит, в интервале, уравнение имеет хотя бы один корень. В то же время уравнение при не имеет ни одного корня, так как,

выполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим Для проверим выполнение условия

Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).

Нахождение приближенного корня с заданной точностью

Исходя из вышесказанного, заключаем, что если выполнено неравенство корень уравнения принадлежит интервалу

ПустьЕсли приближенный

корень уравнения с точностью . Если то корень лежит в интервале если то корень лежит в интервале . Продолжим процесс до нахождения приближенного значения корня с заданной точностью.

Пример №11

Найдите приближенное значение корня уравнения с заданной точностью

Решение:

Из предыдущего примера нам известно, что корень лежит в интервале

(-1; 0). Из того, что заключаем, что корень лежит в интервале (-0,5; 0).

Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если

Пусть

Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://nauka.club/matematika/pokazatelnye-uravneniya.html

http://www.evkova.org/pokazatelnyie-uravneniya-i-neravenstva