Применение показательных уравнений в жизни реферат

Презентация «Применение показательной функции в жизни, науке и технике»
презентация к уроку по алгебре (11 класс) на тему

Презентация к проекту » Применение показательной функции в жизни, науке и технике». Использовалась на уроке » Решенние показательных уравнений».

Скачать:

ВложениеРазмер
prezentatsiya_k_proektu.pptx2.19 МБ

Предварительный просмотр:

Подписи к слайдам:

Проект по теме: «Показательная функция и её применение в жизни, науке и технике». Выполнила: Обучающаяся 11 класса МКОУ « Кореневская средняя общеобразовательная школа №2 Чичканева Дарья . с. Коренево 2013 г.

Показательной функцией называется функция вида y= a ͯ , где а — заданное число, такое, что а>0, а≠ 1 . Определение

1.Область определения показательной функции — множество R всех действительных чисел. 2.Множество значений показательной функции — множество всех положительных чисел 3.Показательная функция y= a ˟ является возрастающей на множестве всех действительных чисел, если а>1, и убывающей, если 0

Если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее, это явление описывается формулой T =( T 1 — T 0 ) e — kt + T 1 е=2.7 Применение показательной функции в жизни, науке и технике.

При падении тел в безвоздушном пространстве скорость их непрерывно возрастает . При падении тел в воздухе скорость падения тоже увеличивается , но не может превзойти определенной величины . Если считать , что сила сопротивления воздуха пропорциональна скорости падения парашютиста , т.е . что F= kv , то через t секунд скорость падения будет равна : v=mg/k(1-e -kt/m ), где m — масса парашютиста . Применение в физике

Применение в физике

Много трудных математических задач приходится решать в теории межпланетных путешествий . Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v . Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v 0 , с которой продукты горения вытекают из ракетного двигателя. Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определиться формулой: M=m ( e v /v0 -1) (формула К.Э.Циалковского ). Например, для того чтобы ракете с массой 1,5 т придать скорость 8000 м/с, надо при скорости истечения газов 2000 м/с взять примерно 80 т топлива. Применение в физике

Если при колебаниях маятника , гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, то амплитуда колебаний становится все меньше, колебания затухают. Это явление можно объяснить формулой: s= Ae -kt sin ( ωt+ω ). Применение в физике

Исследование этого вопроса показало, что площадь сечения троса должна изменяться по следующему закону : , где S o — площадь его нижнего сечения, S — площадь сечения на высоте х от нижнего сечения, γ — удельный вес материала, из которого сделан трос, Р — вес в воде опускаемого груза (нам пришлось написать в формуле γ — 1 вместо γ, так как и материал троса теряет в воде вес по закону Архимеда). Такой трос называют тросом равного сопротивления разрыву. Он имеет меньшую массу, чем трос постоянного сечения, рассчитанный на такую же нагрузку. Применение в физике

Применение в астрономии . Исследуя расположение планет солнечной системы вокруг Солнца, немецкий астроном И.Э. Боде в 1772 составил следующую таблицу: № Планета Расстояние ( L ) до солнца (в астрономических единицах) 1 Меркурий 0,4 2 Венера 0,7 3 Земля 1 4 Марс 1,5 5 6 Юпитер 5,2 7 Сатурн 9,5 К тому времени было открыто только шесть планет, поэтому все вычисления останавливаются на Сатурне. Эти вычисления произвел И.Э. по следующей формуле: Данная формула особенно точна для Венеры, Земли и Юпитера.

Как известно, между Марсом и Юпитером планеты не существует, но если следовать таблице Боде, на данной орбите должно находиться какое — либо космическое тело. И действительно, после некоторых исследований учёными был открыт пояс астероидов . Это было воистину торжеством науки и триумфом математики!

Рост народонаселения . Изменение числа людей в стране на небольшом отрезке времени описывается формулой , где N0 — число людей в момент времени t=0, N -число людей в момент времени t, a k -константа.

По такому же принципу распространились завезённые в Австралию кролики, которые стали экологической катастрофой для этого уникального региона. Рост различных видов микроорганизмов и бактерий, дрожжей, ферментов все эти процессы подчиняются одному закону: N = N 0 e kt Закон органического размножения: при благоприятных условиях (отсутствие врагов, большое количество пищи) живые организмы размножались бы по закону показательной функции. Например: одна комнатная муха может за лето произвести 8 10 14 особей потомства. Их вес составил бы несколько миллионов тонн (а вес потомство пары мух превысил бы вес нашей планеты), они бы заняли огромное пространство, а если выстроить их в цепочку, то её длинна будет больше, чем расстояние от Земли до Солнца. Но так как, кроме мух существует множество других животных и растений, многие из которых являются естественными врагами мух их количество не достигает вышеуказанных значений. Применение в биологии.

Применение в биологии Рост древесины происходит по закону A=A 0* a kt , где A- изменение количества древесины во времени; A0- начальное количество древесины; t-время; k , a — некоторые постоянные

Процессы выравнивания (именно так называют процессы, изменяющиеся по законам показательной функции ) часто встречаются и в биологии. Например, при испуге в кровь внезапно выделяется адреналин, который потом разрушается, причем скорость разрушения примерно пропорциональна количеству этого вещества, еще остающемуся в крови. При диагностике почечных бо­лезней часто определяют способность почек выводить из крови радиоактивные изотопы, причем их количество в крови падает по показательному закону. Примером обратного процесса может служить восстановление концентрации гемоглобина в крови у донора или у раненого, потерявшего много крови. В этом случае по показательному закону убывает разность между нормальным содержанием гемоглобина и имеющимся количеством этого вещества. Как и при радиоактивном распаде, скорость распада или восстановления измеряется временем, в течение которого распадается (соответственно восстанавливается) половина вещества. Для адреналина этот период измеряется долями секунды , для веществ, выводимых почками, — минутами, а для гемоглобина — днями. Применение в биологии

Результаты проекта. 1. Показана широкая область применения показательной функции в жизни , науке и технике. 2. При анализе функций, описывающих физические, биологические и прочие процессы выяснила, что трудность вызывает нахождение аргумента функции по заданному значению функции. Для решения уравнений, где переменная стоит в показателе степени не хватает знаний. 3. Готовясь к ЕГЭ, встретила физическую задачу радиоактивного распада, в которой применяется показательная функция, решить которую пока не смогла. 4. Сделала вывод, что знание свойств показательной функции , не достаточно для решения этой задачи:

Применение показательных уравнений в жизни реферат

Целью моей работы является исследование сфер применения показательной функции.

Объект исследования: показательная функция.

Показательная функция часто применяется в физике, химии, биологии, географии, экономике и иных науках.

Рост количества бактерий, концентрация адреналина в крови, способность почек выводить из крови радиоактивные изотопы, восстановление концентрации гемоглобина в крови, рост количества древесины, количество радиоактивного вещества, изменение количества населения – все это измеряется по законам показательной функции.

В жизни нередко приходиться встречаться с такими фактами, когда скорость изменения какой-либо величины пропорциональна самой величине. В этом случает рассматриваемая величина будет изменяться по закону, имеющему вид y=y0ax

Практическая значимость работы заключается в том, что она позволяет объективно оценить значимость показательной функции, основываясь на рассмотренных фактах, раскрывая особенности применения показательной функции в современной жизни человека.

Материал исследовательской работы может быть использован в форме презентации для выступления различных публичных мероприятиях, в школе; для публикации в печатных изданиях (в научно-популярной литературе), размещения данных о проекте на сайте нашей школы и других сайтах определенной тематики.

Данная работа состоит из следующих этапов:

    Подбор, изучение, анализ информации о функциях, в частности, показательной функции.

    Анкетирование с целью узнать, насколько люди осведомлены о сфере применения показательной функции.

    Исследование свойств показательной функции.

    Примеры применения показательной функции.

    Задачи на показательную функцию.

    Доказать, что функциональные зависимости существуют во всех сферах жизни;

    Расширить знания о показательной функции и методах решения уравнений;

    Узнать, какие явления из жизни и некоторых наук описывает показательная функция;

    Научиться применять полученные знания в нестандартных ситуациях на основе рассмотрения примеров из реальной жизни, при решении практико-ориентированных задач.

    2.1 История развития понятия функции.

    Функция — одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.

    Начиная лишь с 17 века, в связи с проникновением в математику идеи переменных, понятие функции применяется явно и вполне сознательно.

    Путь к появлению понятия функции заложили в 17 веке французские ученые Франсуа Виет (1540-1603) и Рене Декарт (1596-1650);

    Они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание.

    В своей «Геометрии» в 1637 году Декарт дает понятие функции, как изменение ординаты точки в зависимости от изменения ее абсциссы.

    В 1671 году Ньютон (1643- 1727) под функцией стал понимать переменную величину, которая изменяется с течением времени (называл в «флюентой»). Исаак Ньютон (1643- 1727)

    3.1 Аналитическое определение функции.

    Само слово «функция» (от латинского functio — совершение, выполнение) впервые было употреблено немецким математиком Лейбницем в 1673г. в письме к Гюйгенсу (1629-1695) (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону).

    Готфрид Вильгельм Лейбниц (1646-1716)

    Начиная с 1698 года, Лейбниц ввел также термины «переменная» и «константа». В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748) который в 1718 году определил функцию следующим образом: «функцией переменной величины называют количество, образованное каким угодно способ из этой переменной величины и постоянных».

    Окончательную формулировку определения функции с аналитической точки зрения сделал в 1748 году ученик Бернулли Эйлер. «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств».

    Большой вклад в разрешение спора Эйлера, Даламбера, Бернулли и других ученых 18 века по поводу того, что стоит понимать под функцией, внес французский математик Жан Батист Жозеф Фурье.

    Из трудов Фурье следовало, что любая кривая независимо от того, из скольких и каких разнородных частей она состоит, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением.

    Жан Батист Жозеф Фурье4.1 Примеры применения показательной функции

    «Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные, открывают доступ ко многим исследованиям»

    Так утверждал великий ученый, математик Леонард Эйлер. И он был в корне прав, говоря о том, что показательная функция применятся во многих сферах жизни человека.

    Кроме того, перед началом исследования, мною был проведен опрос с целью узнать, осведомлены ли люди о том, что такое показательная функция и где она применяется:

    В итоге, 72% опрошенных не знают, где применяется данная функция. Но в своем исследовании я решила рассказать, где же используется данная функция.

    Приведем примеры, где мы сталкиваемся с показательной функцией в повседневной жизни, а также как она применяется на практике.

    Напомним вид показательной функции: у=а х , где а>0, а≠1, x Є R. Показательная функция встречается в самых различных областях науки — в физике, химии, биологии, экономике.

    A-изменение количества древесины во времени; A0-начальное количество древесины; t-время; k, а — некоторые постоянные.

    2. Давление воздуха убывает с высотой по закону P=P0*a -kh , где P- давление на высоте h, P0 — давление на уровне моря, а- некоторая постоянная.

    Процессы выравнивания (именно так называют процессы, изменяющиеся по законам показательной функции) часто встречаются и в биологии.

    3. Рост количества бактерийпроисходит по закону N=5 t , где N-число колоний бактерий в момент времени t;

    Это закон органического размножения: при благоприятных условиях (отсутствие врагов, большое количество пищи) живые организмы размножались бы по закону показательной функции.

    Также вспомним что, при испуге в кровь внезапно выделяется адреналин, ко­торый потом разрушается, причем скорость разрушения примерно пропорциональна количеству этого вещества, еще остающемуся в крови. При диагностике почечных бо­лезней часто определяют способность почек выводить из крови радиоактивные изотопы, причем их количество в крови падает по показательному закону.

    Примером обрат­ного процесса может служить восстановление концентрации гемоглобина в крови у донора или у раненого, потерявшего много крови. В этом случае по показательному закону убывает разность между нормальным содержанием гемоглобина и имеющимся количеством этого вещества.

    4. Количество радиоактивного вещества, оставшегося к моменту t,

    описывается формулой , где No – первоначальное количество вещества,

    T1/2– период полураспада.

    5. Площадь сечения троса связана с сопротивлением разрыва также по показательному закону.

    Сейчас мно­гие моря и океаны бороздят исследовательские корабли. В заранее установленных местах они останавливаются и спускают за борт трос, на конце которого находятся при­боры. Их опускают на дно, а потом поднимают наверх и записывают показания. Но иногда происходит печальное событие — трос разрывается и все ценные приборы ока­зываются погребенными на дне моря.

    Казалось бы, этой беды можно было бы избежать, сде­лав трос потолще. Но тут возникает новое осложнение — верхние части троса должны удерживать не только спус­каемые приборы, но и нижнюю часть самого троса, а по­тому при утолщении всего троса на верхнюю часть ляжет слишком большая нагрузка.

    Поэтому целесообразно делать нижнюю часть троса тоньше, чем верхнюю. Возникает вопрос: как должна ме­няться толщина троса для того, чтобы в любом его се­чении на 1 см2 приходилась одна и та же нагрузка?

    Исследование этого вопроса показало, что площадь сечения троса должна изменяться по следующему закону: , где

    So — площадь его нижнего сечения,

    S — площадь сечения на высоте х от нижнего сечения,

    γ — удельный вес материала, из которого сделан трос,

    Р — вес в воде опускаемого груза (нам пришлось написать в формуле γ — 1 вместо γ, так как и материал троса теряет в воде вес по закону Архимеда).

    Такой трос называют тросом равного сопротивления разрыву.

    6. Процесс изменения температуры чайника при кипении выражается формулой:

    Все, наверное, замечали, что если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее. Дело в том, что скорость остывания пропорциональна разности между температурой чайника и температурой окружающей среды. Чем меньше становится эта разность, тем медленнее остывает чайник. Если сначала температура чайника равнялась То, а температура воздуха T1, то через t секунд температура Т чайника выразится формулой: T=(T1-T0)e-kt+T1,где k — число, зависящее от формы чайника, материала, из которого он сделан, и количества воды, которое в нем находится.

    7. При падении тел в безвоздушном пространстве скорость их непрерывно возрастает. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определённой величины.

    8. При прохождении света через мутную среду каждый слой этой среды поглощает строго определенную часть падающего на него света. Сила света I определяется по формуле: I = I0e -ks , где

    s – толщина слоя;

    k – коэффициент, характеризующий мутную среду

    В жизни нередко приходиться встречаться с такими фактами, когда скорость изменения какой-либо величины пропорциональна самой величине. В этом случает рассматриваемая величина будет изменяться по закону, имеющему вид y=y0ax. Теперь мы знаем, что все это мы можем вычислить благодаря показательной функции.

    В ходе проведения исследований данного материала, анализа информации, моя гипотеза о том, что функциональные зависимости существуют во всех сферах жизни, подтверждена.

    Также мы расширили знания о показательной функции, изучили свойства показательной функции, узнали многое об истории развития понятия функции.

    Научно — исследовательская работа на тему «Показательная функция в жизни человека»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    «Актуальность создания школьных служб примирения/медиации в образовательных организациях»

    Свидетельство и скидка на обучение каждому участнику

    Районная н аучно — исследовательская конференция

    «Шаг в будущее, Сибирь!»

    Показательная функция в жизни человека

    ученица 10 класса

    МБОУ СОШ п. Усть-Уда

    Анциферова Ольга Владимировна,

    МБОУ СОШ п. Усть-Уда

    п. Усть – Уда, 2015год

    Оглавление

    Районная н аучно — исследовательская конференция

    «Шаг в будущее, Сибирь!»

    Иркутская область, Усть-Удинский район, п. Усть – Уда,

    МБОУ СОШ п. Усть-Уда

    Введение

    «Три пути ведут к знанию:

    путь размышления – это путь самый благородный,

    путь подражания – это путь самый лёгкий

    и путь опыта – это путь самый горький.

    Актуальность данной работы неоспорима. Вы все знаете, что для того чтобы совершить какой-нибудь поступок, прийти к какому либо решению необходим мотив, причина, т.е. то что побуждает человека к его активным действиям и поступкам, которые в результате идут на удовлетворение потребностей. Нам предстоит выяснить, что же побудило людей прийти к «Показательной функции», что вызвало её появление, с чем она связана. Показательная функция нужна была не только в древности, она нужна и сейчас, и будет нужна в будущем.

    Меня заинтересовала эта тема, потому что она требует более глубокого и досконального исследования.

    Цель исследования : установить картину возникновения показательной функции и показать связь функции в жизни человека с другими науками .

    подобрать и проанализировать соответствующую литературу;

    найти определение показательной функции в школьной программе;

    рассмотреть применение функции в различных науках;

    показать применение функции в жизни человека.

    Объект исследования : показательная функция.

    Предмет исследования : практическое применение показательной функции.

    Методы исследования: 1) сбор информации; 2) систематизация и обобщение.

    Гипотеза : функциональные зависимости существуют во всех сферах жизни человека .

    «Шаг в будущее, Сибирь!»

    Иркутская область, Усть-Удинский район, п. Усть – Уда,

    МБОУ СОШ п. Усть-Уда

    2. Теоретическая часть

    2.1 История показательной функции:

    Историю представим мы немного, события расставив по порядку: вы знаете, еще 40 веков назад в египетском папирусе записан ряд. Про семь домов, где кошек 49, и каждая из них по 7 мышей съедает и тем всем столько зерен сохраняет, что мер 17000 составляет.

    О том еще известна нам легенда, что как-то у арабского царя изобретатель шахматной доски, наверно потребовал за доску ту зерна. Причем за клетку первую – зерно, а за вторую – два просил изобретатель, за третью – снова больше раза в два, немало времени царь на подсчет потратил. Когда же подсчитали – прослезились: число двадцатизначно получилось! Хватило б зернами засеять нам всю сушу и миллионы лет пришлось зерно бы кушать.

    Все знают, что такое ростовщик. Тот человек проценты брать привык. Они встречались в Вавилоне древнем, где пятую часть “лихвы” взимали в среднем!

    Пятнадцатый век – рожденье банков, дающих деньги людям под процент, тогда и встал вопрос довольно ярко о дробном показателе, сомненья нет.

    Его развили математик Штифель, Оресм, Шюке, затем Исаак Ньютон. И в завершении Бернулли Иоганном был термин “показательной” введен. На множестве всех чисел он ее нам ввел, как открыватель функции в историю вошел.

    В романе Жюля Верна «Матиас Шандор» силач Матифу совершил много подвигов, среди которых есть такой. Готовился спуск на воду трабоколо. Когда уже начали выбивать из-под киля клинья, удерживавшие трабоколо на спусковой дорожке, в гавань влетела нарядная яхта. Спускавшееся судно неминуемо должно было врезаться в борт плывущей верфи яхты.

    « Вдруг из толпы зрителей выскакивает какой-то человек. Он хватает трос, висящий на носу трабоколо. Но тщетно старается он, упираясь в землю ногами, удержать трос в руках…Поблизости врыта в землю швартовая пушка. В мгновение ока неизвестный набрасывает на неё трос, который начинает медленно разматываться, а храбрец, рискуя попасть под него и быть раздавленным, сдерживает его с нечеловеческой силой. Это длится секунд десять. Наконец-то, трос лопнул. Но этих десяти секунд оказалось достаточно. Трабоколо прошло за кормой яхты на расстоянии не более фута… . Яхта была спасена».

    Но как вы думаете, нужна ли была его нечеловеческая сила, чтобы удержать корабль?

    Мальчики, наверное, знают, как происходит швартовка корабля. С парохода на пристань бросают канат, на конце которого сделана широкая петля. Человек, стоящий на пристани надевает петлю на причальную тумбу, а матрос на корабле укладывает канат между кнехтами – небольшими тумбами, укрепленными на борту корабля. Сила трения между канатом и кнехтами и останавливает судно. Обычно матрос, обернув канат несколько раз вокруг кнехтов, просто поддерживает свободный конец ногой, прижимая его к палубе. Что же позволяет удерживать одному человеку корабль? Это увеличение силы. Чем больше оборачиваем канат вокруг столба, тем больше увеличивается сила. Такое явление мы используем ежедневно, завязывая шнурки на ботинках, узлы на верёвках и т.д. Так как узел-это верёвка, обвитая вокруг другой верёвки, он тем крепче, чем больше раз одна часть верёвки сплетается с другой.

    2.2 Применение показательной функции.

    Особое внимание показательной функции как той математической модели, которая находит наиболее широкое применение при изучении процессов и явлений окружающей действительности.

    Показательная функция в жизни.

    Показательная функция не случайно родилась, в жизнь органически влилась и движением прогресса занялась.

    Во многих областях науки при изучении различных явлений и процессов обнаруживается одна общая функциональная зависимость между двумя переменными величинами, участвовавшими в данном процессе.

    1. Изменение числа людей в стране на небольшом отрезке времени описывается формулой , где Nо — число людей в момент времени t=0, N -число людей в момент времени t, a k -константа.

    2. Процессы выравнивания (именно так называют процессы, изменяющиеся по законам показательной функции) часто встречаются в жизни.

    При испуге в кровь внезапно выделяется адреналин, который потом разрушается, причем скорость разрушения примерно пропорциональна количеству этого вещества, еще остающемуся в крови. При диагностике почечных болезней часто определяют способность почек выводить из крови радиоактивные изотопы, причем их количество в крови падает по показательному закону.

    Примером обратного процесса может служить восстановление концентрации гемоглобина в крови у донора или у раненого, потерявшего много крови. В этом случае по показательному закону убывает разность между нормальным содержанием гемоглобина и имеющимся количеством этого вещества.

    При радиоактивном распаде, скорость распада или восстановления измеряется временем, в течение которого распадается (соответственно восстанавливается) половина вещества. Для адреналина этот период измеряется долями секунды, для веществ, выводимых почками, — минутами, а для гемоглобина — днями.

    По закону данной функции размножалось бы все живое на Земле, если бы для этого имелись благоприятные условия, т.е. не было естественных врагов и было вдоволь пищи. Доказательство тому – распространение в Австралии кроликов, которых там не было раньше. Достаточно было выпустить пару особей, как через некоторое время их потомство стало национальным бедствием.

    рост бактерий в идеальных условиях соответствует процессу органического роста;

    Показательная функция в науке и технике.

    1. Если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее, это явление описывается формулой T =( T 1 — T 0 ) e — kt + T 1 е=2.7

    2.При падении тел в безвоздушном пространстве скорость их непрерывно возрастает. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определенной величины. Если считать, что сила сопротивления воздуха пропорциональна скорости падения парашютиста, т.е. что F = kv , то через t секунд скорость падения будет равна: v = mg / k (1- e — kt / m ), где m — масса парашютиста .

    Много трудных математических задач приходится решать в теории межпланетных путешествий. Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v. Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v 0 , с которой продукты горения вытекают из ракетного двигателя. Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определиться формулой: M=m(e v/v0 -1) (формула К.Э.Циалковского). Например, для того чтобы ракете с массой 1,5 т придать скорость 8000 м/с, надо при скорости истечения газов 2000 м/с взять примерно 80 т топлива.

    3.Рассматривая колебания маятника, гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, я сделала вывод,что амплитуда колебаний становится все меньше, колебания затухают. Это явление можно объяснить формулой: s = Ae kt sin ( ωt + ω ).

    4.Рассматривая трос равномерного сопротивления разрыва, заметила, что он имеет меньшую массу, чем трос постоянного сечения, рассчитанный на такую же нагрузку.

    Исследование этого вопроса показало, что площадь сечения троса должна изменяться п о следующему закону:

    S o — площадь его нижнего сечения,

    S — площадь сечения на высоте х от нижнего сечения,

    γ — удельный вес материала, из которого сделан трос,

    Р — вес в воде опускаемого груза (нам пришлось написать в формуле γ — 1 вместо γ, так как и материал троса теряет в воде вес по закону Архимеда).

    5.Исследуя расположение планет солнечной системы вокруг Солнца, немецкий астроном И.Э. Боде в 1772 составил следующую таблицу:


    источники:

    http://school-science.ru/2/7/30369

    http://infourok.ru/nauchno-issledovatelskaya-rabota-na-temu-pokazatelnaya-funkciya-v-zhizni-cheloveka-752538.html