Применение уравнений лагранжа ii рода

Курсовая работа: Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы

Министерство образования Республики Беларусь

«Гомельский государственный университет

Кафедра дифференциальных уравнений

«Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы»

1 Механическая система. Связи. Классификация связей

2 Возможные перемещения. Число степеней свободы

3 Обобщенные координаты и обобщенные скорости

4 Обобщенные силы

5 Уравнения Лагранжа второго рода

6 Уравнения Лагранжа второго рода для консервативной системы

7 Применение уравнений Лагранжа второго рода к исследованию механической системы

Список использованной литературы

Уравнения Лагранжа дают единый и притом достаточно простой метод решения задач динамики. Важное преимущество этих уравнений состоит в том, что их вид и число не зависят ни от количества тел (или точек), входящих в рассматриваемую систему, ни от того, как эти тела движутся; определяется число уравнений Лагранжа только числом степеней свободы. Кроме того, при идеальных связях в правые части уравнений входят обобщённые активные силы, и, следовательно, эти уравнения позволяют заранее исключить из рассмотрения все наперёд неизвестные реакции связей.

Основная задача динамики в обобщённых координатах состоит в том, чтобы, зная обобщённые силы и начальные условия, найти закон движения системы, то есть определить обобщённые координаты как функции времени. Уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщённых координат и составляются независимо от того, рассматривается ли абсолютное (по отношению к инерциальной системе отсчёта) или относительное движение механической системы. Из полученных уравнений, если заданы действующие силы и начальные условия, можно, интегрируя эти уравнения, найти закон движения системы. Если же задан закон движения, то составленные уравнения позволяют определить действующие силы.

1 Механическая система. Связи. Классификация связей

Систему материальных точек или тел, движение которой рассматривается, будем называть механической системой. Если между точками (телами) механической системы действуют силы взаимодействия, то она обладает тем свойством, что в ней положение или движение каждой точки (тела) зависит от положения и движения всех остальных. Классическим примером такой системы является солнечная система, в которой все тела связаны силами взаимного притяжения.

Определение 1 [1, с. 357]: Связями называются любого вида ограничения, которые налагаются на положения и скорости точек механической системы и выполняются независимо от того, какие на систему действуют заданные силы.

Рассмотрим, как классифицируются эти связи.

Связи, не изменяющиеся со временем, называются стационарными, а изменяющиеся со временем – нестационарными.

Связи, налагающие ограничения на положения (координаты) точек системы, называются геометрическими, а налагающие ограничения еще и на скорости (первые производные от координат по времени) точек системы – кинематическими или дифференциальными.

Если дифференциальную связь можно представить как геометрическую, т.е. устанавливаемую этой связью зависимость между скоростями свести к зависимости между координатами, то такая связь называется интегрируемой, а в противном случае – неинтегрируемой.

Геометрические и интегрируемые дифференциальные связи называются голономными связями, а неинтегрируемые дифференциальные связи – неголономными.

По виду связей механические системы тоже разделяют на голономные (с голономными связями) и неголономные (содержащие неголономные связи).

Наконец, различают связи удерживающие (налагаемые ими ограничения сохраняются при любом положении системы) и неудерживающие, которые этим свойством не обладают.

2 Возможные перемещения. Число степеней свободы

Определение 2 [1.с. 358] : Возможным перемещением механической системы называется любая совокупность элементарных перемещений точек этой системы из занимаемого в данный момент времени положения, которые допускаются всеми наложенными на систему связями.

Механическая система может иметь множество различных возможных перемещений. Однако для любой из систем можно указать некоторое число таких независимых между собой перемещений, что всякое другое возможное перемещение может быть через них выражено.

Определение 3 [1, с. 359]: Число независимых между собой возможных перемещений механической системы называются числом степеней свободы этой системы.

Следовательно, точка, находящаяся на плоскости, имеет две степени свободы; одновременно ее положение на плоскости определяется двумя независимыми координатами (координатами, каждая из которых может изменяться независимо от другой), например координатами х и у. Свободная материальная точка имеет три степени свободы (независимыми будут три возможных перемещения вдоль трех взаимно перпендикулярных осей); одновременно положение точки определяется тремя независимыми координатами х, у, z.

Этот результат оказывается общим, т.е. у механической системы с геометрическими связями число независимых координат, определяющих положение системы, совпадает с числом ее степеней свободы. Поэтому у такой системы число степеней свободы можно определять как по числу независимых возможных перемещений, так и по числу независимых координат.

3 Обобщенные координаты и обобщенные скорости

Число координат (параметров), определяющих положение механической системы, зависит от количества точек (тел), входящих в систему, и от числа и характера наложенных связей. Будем в дальнейшем рассматривать только системы с геометрическими связями (точнее только голономные системы). У такой системы число независимых координат, определяющих положение системы, совпадает с числом ее степеней свободы. В качестве этих координат можно выбирать параметры, имеющие любую размерность и любой геометрический (или физический) смысл, в частности отрезки прямых или дуг, углы, площади и т.д.

Определение 4 [1, с. 369]: Независимые между собой параметры любой размерности, число которых равно числу степеней свободы системы и которые однозначно определяют ее положение, называются обобщенными координатами системы. Будем обозначать обобщенные координаты буквой q. Тогда положение системы, имеющей s степеней свободы, будет определяться s обобщенными координатами

Определение 5 [1, с. 370]: Производные от обобщенных координат по времени называются обобщенными скоростями системы.

4 Обобщенные силы

Рассмотрим механическую систему из n механических точек ,,…,, находящуюся под действием системы сил ,,…,.

Предположим, что система имеет s степеней свободы, т.е. положение определяется s обобщенными координатами .

При наличии нестационарных связей радиус-вектор является функцией обобщенных координат и времени:

,) (i = 1,2,…, n).

Сообщим элементарное приращение только одной координате , оставляя неизменными все остальные обобщенные координаты.

Тогда радиус-вектор точки М получит приращение , обусловленное приращением этой координаты:

=.

Вычислим работу всех сил, действующих на механическую систему на перемещения точек , вызванных перемещением координаты :

= = ==

Разделив на элементарное приращение обобщенной координаты , получим величину , называемую обобщенной силой:

= (1)

Определение 6 [2, с. 320] : Обобщенной силой , соответствующей обобщенной координате , называется скалярная величина, определяемая отношением элементарной работы действующих сил на перемещение механической системы, вызванном элементарным приращением координаты , к величине этого приращения.

В случае сил, имеющих потенциал, обобщенная сила, соответствующая обобщенной координате , равна взятой со знаком минус частной производной от потенциальной энергии механической системы по этой координате.

= (j =1, 2, …, s).

5 Уравнения Лагранжа второго рода

Предположим, что механическая система из n материальных точек имеет s степеней свободы. В случае голономных нестационарных связей радиус-вектор любой точки М, этой системы является функцией обобщенных координат и времени t:

,). (2)

Обобщенные координаты системы являются функциями времени. Поэтому радиус-вектор является сложной функцией времени и вектор скорости точки , определяется по правилу дифференцирования сложной функции:

(3)

Из выражения (3) следует, что частная производная от по какой-либо обобщенной скорости равна коэффициенту при в правой части этого выражения, т.е. равна частной производной от по координате :

(4)

Кинетическая энергия механической системы, как известно, определяется по формуле:

(5)

Из выражения (3) следует, что вектор скорости точки в случае голономных нестационарных связей является функцией обобщенных координат, содержащихся в выражениях , обобщенных скоростей и времени. Поэтому кинетическая энергия механической системы является функцией тех же переменных:

(6)

Найдем частные производные от кинетической энергии по обобщенной координате и обобщенной скорости , дифференцируя выражение (5) как сложную функцию:

Преобразуем последнее выражение на основании равенства (4):

Продифференцируем это выражение по времени:

(7)

Рассмотрим две суммы, входящие в правую часть полученного равенства (7), учитывая, что для несвободной материальной точки

1. С помощью равенства (1), определяющего обобщенную силу, находим:

2. Для установления значения второй суммы рассмотрим выражение

Частная производная является функцией тех же переменных, от которых, согласно (2), зависит радиус-вектор точки . Дифференцируем как сложную функцию времени:

(8)

Найдем частную производную , дифференцируя по выражение (3):

(9)

Правые части выражений (8) и (9) отличаются только последовательностью дифференцирования, которая при непрерывных функциях не имеет значения; следовательно,

.

Пользуясь этой зависимостью, преобразуем вторую сумму в правой части равенства (7):

=

Подставляя найденные значения обеих сумм в равенство (7) и рассматриваем механическую систему со стационарными идеальными связями, для которых :

+,

=(j = 1,2,…, s). (10)

Систему s дифференциальных уравнений (10) называют уравнениями Лагранжа второго рода. Эти уравнения представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат системы .Интегрируя эти дифференциальные уравнения и определяя по начальным условиям постоянные интегрирования, получаем s уравнений движения механической системы в обобщенных координатах:

(j=1, 2,…, s).

6 Уравнения второго рода для консервативной системы

Предположим, что на рассматриваемую механическую систему наряду с силами, имеющими потенциал (консервативными силами), действуют силы, не имеющие потенциала (неконсервативные силы). При этом условии обобщенную силу удобно представить в виде суммы обобщенной силы , соответствующей консервативным силам , и обобщенной силы , соответствующей неконсервативным силам :

=+.

Если на рассматриваемую систему действуют только консервативные силы, то обобщенная сила определяется формулой:

= = (j=1,2,…, s).

В этом случае уравнения Лагранжа второго рода принимают следующий вид:

= (j = 1,2,…, s). (11)

Уравнения (12) можно преобразовать путем введения функции Лагранжа L = Т – П, называемой кинетическим потенциалом.

П = П (t).

Следовательно, кинетический потенциал L является функцией обобщенных координат, обобщенных скоростей и времени:

Потенциальная энергия является функцией только обобщенных координат и времени, а потому

(j=1,2,…, s).

Пользуясь этим условием, получим

,

Подставим эти частные производные в уравнения Лагранжа (11):

(j=1,2,…, s). (12)

Уравнения (12) называются уравнениями Лагранжа второго рода для консервативной системы.

7 Применение уравнений Лагранжа II рода к исследованию движения механической системы

Массы тел механической системы m= 2m; m= 6m; m=m. Начальные условия:,,,.

Найти уравнения движения системы в обобщенных координатах ,.

Для решения задачи применим уравнения Лагранжа II рода:

(13)

Здесь T – кинематическая энергия; – потенциальная энергия; и– обобщенные силы, соответствующие неконсервативным силам.

Для данной системы (14)

Введем переменную

Выразим скорости центров масс твердых тел системы через обобщенные скорости:

Угловая скорость тела 4

Момент инерции тела 4

Кинематическая энергия тел 1 – 4:

Подставляя эти величины в (14), получим

+++=

(15)

Потенциальную энергию системы находим как работу сил тяжести твердых тел 1 и 3 при их перемещении из данного положения, характеризуемого координатами x и , в некоторое исходное нулевое, например то, от которого ведется отсчет обобщенных координат:

(16)

Обобщенные силы = 0 и =0 (т. к. на механическую систему не действуют силы ).

Подставляя (15) и (16) в (13), получаем дифференциальные уравнения движения системы:

(17)

Выражая x из (18), получаем

(18)

Интегрируя (19), получаем

(19)

(20)

Для определения постоянных и , используя начальные условия: при t=0 x=0; x=0.

Из (19) и (20) следует =0 и =0.

(21)

Уравнение (21) является уравнением движения системы, описывающим изменение первой обобщенной координаты.

Чтобы получить второе уравнение движения, находим из (17)

(22)

Интегрируя (23), получаем

(23)

(24)

Для определения постоянных и , используя начальные условия: при t=0 =0;=0.

Из (24) и (25) следует =0 и =0.

(25)

Уравнение (25) является уравнением движения системы, описывающим изменение второй обобщенной координаты.

Итак, уравнения Лагранжа II рода применяются для исследования движения механической системы с двумя степенями свободы. Чтобы для данной механической системы составить уравнения Лагранжа, необходимо установить число степеней свободы системы и выбрать обобщённые координаты; изобразить систему в произвольном положении и показать все действующие силы; вычислить обобщённые силы; определить кинетическую энергию системы в её абсолютном движении и выразить её через обобщённые скорости; составить уравнения Лагранжа.

Уравнения Лагранжа дают единый метод решения задач динамики, они не зависят от числа и количества точек, входящих в рассматриваемую систему, от движения самой системы. Уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщённых координат. Число уравнений Лагранжа определяется только числом степеней свободы системы.

Список использованной литературы

1. С.М. Тарг «Краткий курс теоретической механики» – М.: Высшая школа, 1986 г., 416.

2. А.А. Яблонский «Курс теоретической механики» – М.: Высшая школа, 1984 г., 436.

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ

Ростовский государственный университет

П. Г. Иваночкин, Т. Я. Кожевникова, А. П. Сычев

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Методические указания к выполнению

расчетно-графической работы Д7 по теоретической механике

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы. Методические указания к выполнению расчетно-графической работы Д-7 по теоретической механике /П. Г. Иваночкин, Т. Я. Кожевникова, А. П. Сычев; Ростовский госуниверситет путей сообщения. Ростов-на-Дону, 2000, 19 с.

Кратко излагается теоретический материал, приводятся примеры решения типовых задач. Даны варианты к расчетно-графической работе Д7.

Одобрены к изданию кафедрой теоретической механики РГУПС и предназначены студентам механических специальностей.

Ил. 2 Библиогр.: 4 назв.

Рецензенты: канд. физ.-мат. наук, доц. А. И. Задорожный (РГУ); канд. техн. наук, доц. В. Г. Вильданов (РГУПС)

Иваночкин Павел Григорьевич

Сычев Александр Павлович

Методические указания к выполнению

Расчетно-графических работ Д7 по теоретической механике

Подписано в печать______2000г. Формат 60х84/16.

Бумага офсетная. Печать офсетная. Усл. печ. л 0,93.

Уч.-изд. л. 0,88. Тираж ____. Изд. № 000. Заказ № ____.

Ростовский государственный университет путей сообщения.

Ризография АСУ РГУПС. Лицензия ПДЛ №65-10 от 08.08.99г.

Адрес университета: 344038, г. Ростов н/Д, пл. им. Ростовского стрелкового полка народного ополчения,2

Ó Ростовский государственный университет путей сообщения, 2000

1. Общие указания

2. Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

3. Условие задачи Д7

4. Указания к решению задачи

5. Примеры решения типовых задач

6. Данные к вариантам задания Д7

7. Схемы к вариантам задания Д7

В первой части методических указаний содержатся краткие сведения из теории и примеры решения задания Д7, входящего в курсовую работу по теоретической механике.

В приложении I студент выбирает свой вариант по номеру рисунка согласно цифре, под которой его фамилия стоит в учебном журнале. Исходные данные берутся из таблицы (приложение 2). Номер строки в ней для каждой группы назначает преподаватель.

Оформление отчета

Расчетно-графическая работа оформляется в такой последовательности:

— условие задачи с рисунком;

На отдельном листе нужно полностью переписать условие задачи и выполнить относящийся к ней рисунок. Он должен быть выполнен четко, аккуратно, карандашом. В работе надо оставлять поля для замечаний консультанта.

Решение каждой задачи следует сопровождать пояснениями, то есть надо указывать, какие теоремы, формулы или уравнения применяются для решения. Чертежи, выполняемые в процессе решения задачи, должны соответствовать конфигурации системы в рассматриваемый момент времени, на них должны изображаться все векторы (силы, ускорения). Формулы сначала надо написать в общем виде (буквенном), а затем подставлять числовые значения, рядом указывать единицы измерения. В конце расчета дается сводная таблица полученных результатов.

Порядок приема и сдачи индивидуального задания

I. Срок сдачи индивидуального задания указывается консультантом (руководителем практических занятий).

II. При защите расчетно-графической работы студент должен пояснить ход ее выполнения, ответить на все поставленные вопросы и в отдельных случаях решить предложенные ему примеры.

III. Работа, небрежно выполненная и содержащая орфографические ошибки, не принимается.

Задание не засчитывается, если указанные требования не выполнены!

Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Краткие сведения из теории к заданию

Уравнения Лагранжа второго рода представляют собой систему уравнений динамики в обобщенных координатах. Использование их является универсальным методом получения системы дифференциальных уравнений, описывающих движение любой механической системы

Обобщенными координатами системы называется совокупность независимых параметров, которые при наименьшем числе однозначно определяют положение механической системы.

В последующем обобщенные координаты обозначаются q1, q1,…, qN или qj(j=1,2,…,N). Производные по времени от обобщенных координат называются обобщенными скоростями . Число N независимых обобщенных координат голономной системы равно числу ее степеней свободы.

Уравнения Лагранжа второго рода имеют вид

где Т — кинетическая энергия системы;

Qj — обобщенная сила, соответствующая j-той обобщенной координате.

Кинетическая энергия системы равна сумме кинетических энергий всех объектов, образующих систему.

Кинетическая энергия твердого тела определяется по формулам:

— при поступательном движении

,

– скорость центра масс тела;

,

Jz – момент инерции тела относительно оси вращения;

w — угловая скорость вращения;

— при плоскопараллельном движении

,

Jzc – момент инерции тела относительно оси, проходящей через центр масс, перпендикулярно плоскости движения.

Величина называется j-той обобщенной силой.

Если вычислить сумму элементарных работ активных сил, действующих на точки системы на возможном перемещении системы, то соответствующая формула может быть представлена в виде

поэтому часто обобщенные системы определяют как коэффициенты, стоящие в выражении суммы элементарных работ активных сил при соответствующих обобщенных возможных перемещениях.

Для определения обобщенной силы, соответствующей j-той обобщенной координате, необходимо этой координате сообщить приращение , оставляя все остальные обобщенные координаты без изменений; вычислить сумму элементарных работ всех сил, действующих на систему, на этом перемещении и полученную работу разделить на приращение обобщенной координаты

При вычислении работы сил используются следующие формулы:

— работа сил тяжести

,

h – изменение высоты между начальным и конечным положениями

— работа силы трения

— работа постоянной силы на прямолинейном перемещении

,

a — угол между направлением силы и направлением перемещения

— работа сил, приложенных к вращающемуся телу

,

Mz(F) – момент силы относительно оси вращения;

j — угол поворота тела

Методика составления уравнений Лагранжа второго рода

Составление уравнений Лагранжа второго рода производится в следующем порядке:

1) определяется число степеней свободы заданной механической системы;

2) выбираются независимые обобщенные координаты, число которых равно числу степеней свободы;

3) вычисляется кинетическая энергия Т рассматриваемой системы, которая выражается через обобщенные скорости;

4) находятся частные производные кинетической энергии по обобщенным скоростям, т. е.

затем вычисляются их производные по времени

5) определяются частные производные кинетической энергии по обобщенным координатам

6) находятся обобщенные силы Q1, Q2,…QN соответствующие выбранным обобщенным координатам;

7) полученные в п. п. 4-6 результаты подставляются в уравнения Лагранжа.

Условие задачи Д-7

Механическая система состоит из ступенчатых шкивов 1 и 2 весом Р1 и Р2 с радиусами R1=R, r1=0,4R и R2=R, r2=0,8R (массу каждого шкива считать равномерно распределенной по его внешнему ободу); грузов или сплошных однородных цилиндрических катков 3, 4, 5, веса которых Р3, Р4, Р5 соответственно. Тела системы соединены нитями, намотанными на шкивы и невесомые блоки. Участки нити параллельны соответствующим плоскостям. Грузы скользят по плоскостям без трения, а катки катятся без скольжения. Система движения в вертикальной плоскости под действием сил тяжести, кроме того, на одно из тел действует постоянная сила F, а на шкивы 1 или 2 при их вращении действуют постоянные моменты сил сопротивления М1 и М2.

Определить величину, указанную в таблице в столбце «Найти», где e1 и e2 — угловые ускорения шкивов 1 и 2, аС3, аС4, аС5 — ускорения грузов или центров масс соответствующих катков. (Если необходимо определить e1 или e2 принять R=0,25м).

Указания к решению задачи

Для исследования движения системы нужно составить уравнение Лагранжа 2-го рода. Во всех вариантах система имеет одну степень свободы, и еe положение определяется одной обобщенной координатой q. Уравнение Лагранжа — это дифференциальное уравнение 2-го порядка относительно обобщенной координаты.

(1)

Если нужно найти ускорение a3C или a4C грузов 3,4 или ускорение a5C центра масс С катка 5, то за обобщенную координату целесообразно принять перемещение х центра масс этих тел, тогда — обобщенная скорость и уравнение примет вид:

(2)

Если же нужно определить угловое ускорение e1 или e2 одного из шкивов, то за обобщенную координату нужно принять угол поворота шкива, т. е. и уравнение будет иметь вид:

(3)

Для составления уравнения (2) или (3) нужно вычислить кинетическую энергию Т системы, выразив её через обобщенную скорость ( или ) и обобщенную координату q (x или j). Затем нужно найти обобщенную силу Qx или Qj, для определения которой нужно сообщить системе возможное (малое) перемещение ( или ) и вычислить сумму элементарных работ всех сил на этом перемещении. Элементарные перемещения всех тел нужно выразить через dx или dj , тогда получим: или , т. е. коэффициенты при dx или dj в выражении dА и будут обобщенными силами.

Примечание: в варианте №21 шкивы 1, 2 и в варианте №25 шкив 2 считать однородными цилиндрами.

Примеры решения типовых задач

Дано: Р1=12Р, Р2=8Р, Р3=2Р, Р4=12Р, Р5=6Р, F=3P, M=3PR

(Р-в Н, R-в м.), R1=0,3R, r1=0,2R, R2=0,2R, r2=0,1R.

1. Система имеет одну степень свободы. За обобщенную координату возьмем перемещение груза 4 (q=x).

Предположим, груз 4 опускается. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы:

(2)

Шкивы 1 и 2 вращаются вокруг неподвижной оси, грузы 3 и 4 движутся поступательно, а каток 5 движется плоскопараллельно.

(3)

(4)

3. Скорости n3 и nс, угловые скорости w1, w2 и w5 выразим через обобщенную скорость

(5)

Подставляя значения (4) и (5) в равенства (3), а затем в (2), получим:

Найдем частные производные от Т по х и :

(7)

4. Определим обобщенную силу . На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , и момент пары силы М(сила работы не совершает, т. к. груз 3 движется по горизонтали).

Сообщим системе возможное перемещение dх груза 4 в направлении его движения и покажем перемещения остальных тел: груза 3-dх3, центра масс С катка 5-dхс, а для шкивов углы поворота dj1 и dj2. Вычислим сумму элементарных работ сил тяжести , , силы и момента пары сил М на этих перемещениях.

Коэффициент при dх в выражении dА будет обобщенной силой Qх.

5. Найденные величины (7) и (8) подставим в уравнение (1).

Отсюда находим:

Ответ:

Дано: Р1=2Р, Р2=0, Р3=3Р, Р4=0, Р5=4Р, F=12Р, М1=0,3РR, М2=0

R1=R, R2=R, r1=0,4R, r2=0,8R, R=0,25м, a=60°, b=30°

Найти: e2 – угловое ускорение второго шкива

1. Система имеет одну степень свободы. За обобщенную координату возьмем угол поворота шкива 2 (q=j). Предположим, что шкив вращается против часовой стрелки. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы

(2)

Грузы 3 и 4 движутся поступательно, следовательно

Шкивы 1 и 2 вращаются вокруг неподвижных осей, следовательно

Каток 5 движется плоскопараллельно

3. Скорости V3, V4, VС, угловые скорости w1, w5 выразим через обобщенную скорость

Из рисунка видно, что

(точка Р касания катка и наклонной плоскости является мгновенным центром скоростей катка)

Подставим найденные выражения в формулу кинетической энергии системы

4. Определим обобщенную силу Qj. На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , , и моменты пары сил М1 и М2 (силы и приложенные к осям вращения шкивов работы не совершают).

Сообщим системе возможное перемещение соответствующее повороту шкива 2 на угол против часовой стрелки и покажем перемещения остальных тел: груза 3 — , груза 4 — , центра масс С кат-ка 5 — , а для шкива 1 – угол поворота .

Вычислим сумму элементарных работ указанных активных сил (силы тяжести сила и пара сил с моментом М) на выбранном возможном перемещении системы

,

Вычислим обобщенную силу Q по формуле

Подставляя все полученные выражения в уравнение Лагранжа получим его в виде

iSopromat.ru

Уравнения Лагранжа второго рода, которые представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат.

Для такой системы можно записать s уравнений, которые называются уравнениями Лагранжа второго рода или дифференциальными уравнениями движения в обобщенных координатах:

Уравнения Лагранжа второго рода могут быть обобщены на случай связей, осуществляемых с трением, хотя они и не являются идеальными. Для этого следует силу трения перенести из группы сил реакции в группу активных сил, тогда связь с трением можно формально считать идеальной.

Уравнения Лагранжа второго рода представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат q1, q2,…qs.

Дважды интегрируя эти уравнения и определяя по начальным условиям постоянные интегрирования, получим систему уравнений движения в обобщенных координатах:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах


источники:

http://pandia.ru/text/80/291/23590.php

http://isopromat.ru/teormeh/kratkaja-teoria/uravnenia-lagranzha-vtorogo-roda

Название: Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 00:07:14 27 августа 2009 Похожие работы
Просмотров: 1679 Комментариев: 32 Оценило: 3 человек Средний балл: 4 Оценка: неизвестно Скачать