Применения дифференциальных уравнений к решению прикладных задач

Применение дифференциальных уравнений первого порядка для решения задач

Раздел 1. Математический анализ

Тема 1.4. Дифференциальные уравнения и их применения в медицине

1. Основные понятия и определения дифференциального уравнения.

2. Методы решения некоторых дифференциальных уравнений.

3. Применение дифференциальных уравнений первого порядка для решения задач.

Основные понятия и определения дифференциального уравнения

Опр. Равенство, связывающее независимую переменную х, неизвестную функцию у = f(x), а так же её производные y’,y”,….. y n , называется обыкновенным дифференциальным уравнением.

F(x,y.y’,y”………) = 0, где F – известная функция, заданная в некоторой фиксированной области; х – независимая переменная; у – зависимая переменная; y’,y”,….. y n – её производные.

Опр. Решением дифференциального уравнения называется функция у = f(x), которая будучи представлена в уравнении F(x,y.y’,y”………) = 0, обращает его в тождество. График этой функции называется интегральной кривой.

Пример 1.1. Дифференциальное уравнение

Представим в виде: ; возьмём интеграл от левой и правой части уравнения: Получим – общее решение дифференциального уравнения, которое включает произвольную постоянную с.

Методы решения некоторых дифференциальных уравнений

Выбор метода решения дифференциального уравнения зависит от его вида.

Дифференциальные уравнения первого порядка с разделяющимися переменными.

Уравнения вида называется уравнением с разделяющимися переменными, если функция разлагаются на множители, зависящие каждый только от одной переменной:

После резделения переменных, когда каждый член будет зависеть только от одной переменной, общий интеграл уравнения находится почленным интегрированием:

Решением этого уравнения будет:

Пример 2.1. Найти решение уравнения: .

Разделим уравнение на множители, зависящие только от одной переменной:

Проинтегрируем левую и правую части:

Общее решение:

Линейные дифференциальные уравнения первого порядка.

Опр. Уравнения вида: , где – непрерывные функции, называются линейными дифференциальными уравнениями первого порядка.

При уравнение – называется линейным однородным уравнением. Общее решение:

При уравнение – называется линейным неоднородным уравнением. Общее решение:

Применение дифференциальных уравнений первого порядка для решения задач

Этапы решения задач с помощью дифференциальных уравнений:

1. Оформить условия, в которых протекают изучаемые процессы;

2. Выбрать зависимые и независимые переменные;

3. Определить функциональные зависимости между ними

4. Решение уравнения;

5. Анализ полученных решений.

В уравнениях, описывающих медико-биологические процессы, в качестве независимой переменной чаще всего используется временная компонента.

Размножение бактерий

Если бактерии обитают в благоприятной среде, то скорость размножения бактерий пропорциональна размеру популяции. Такое предположение описывается дифференциальным уравнением: где х – количество бактерий; k – коэффициент пропорциональности. Тогда, разделяя переменные и интегрируя левую и правую части уравнения получим: где N0 – начальное количество бактерий; N — количество бактерий в момент времени t.

Вычислим определённые интегралы:

Получим экспоненциальную кривую, которая зависит от времени и k. Если то количество бактерий будет возрастать по экспоненциальному закону, при , а при — оставаться на постоянном уровне.

N
N0
k 0
t

Для определения значения k необходимо иметь дополнительные сведения об изменении численности бактерий за определённый промежуток времени.

Внутривенное введение глюкозы

При внутривенном введении с помощью капельницы скорость поступления глюкозы в кровь постоянна и равна с. В крови глюкоза разлагается и удаляется из кровеносной системы со скоростью, пропорциональной имеющемуся количеству глюкозы. Тогда дифференциальное уравнение, описывающее этот процесс, имеет вид: где х – количество глюкозы в крови в текущий момент времени; с – скорость поступления глюкозы в кровь; — положительная постоянная. Запишем это уравнение в виде:

Это неоднородное линейное дифференциальное уравнение первого порядка, и его общее решение находиться по формуле:

где k- постоянная интегрирования. Чтобы найти постоянную k, необходимо знать начальное значение глюкозы в крови х (0).

Тогда .

Частное решение уравнения имеет вид:

При увеличении времени уровень глюкозы в крови приближается к .

ГЛАВА 3. Применение дифференциальных уравнений первого порядка для решения прикладных задач физики, биологии, медицины

Задача 1. Скорость размножения некоторых бактерий пропорциональна количеству бактерий, имеющихся в наличии в рассматриваемый момент времени t. Количество бактерий утроилось в течение 5 часов. Найти зависимость числа бактерий от времени.

Решение. Обозначим количество бактерий в момент времени t через x, тогда — скорость размножения бактерий.

По условию задачи — уравнение с разделяющимися переменными.

Потенцируем последнее выражение и получаем общее решение нашего дифференциального уравнения.

Найдем частное решение, соответствующее начальным условиям

При t=0, x=x0 -частное решение дифференциального уравнения.

Чтобы найти искомую зависимость, определим коэффициент пропорциональности k. По условию задачи известно, что через 5 часов .

Прологарифмируем последнее выражение

Окончательно получаем

Задача 2. При прохождении света через вещество происходит ослабление интенсивности светового потока, вследствие превращения световой энергии в другие виды энергии, т.е. происходит поглощение света веществом. Найти закон поглощения, если известно, что ослабление интенсивности пропорционально толщине слоя и интенсивности падающего излучения.

Решение. Исходя из условия задачи, можно сразу написать дифференциальное уравнение

,

где dI -ослабление интенсивности при прохождении слоя толщиной dx.

k -коэффициент пропорциональности.

Знак минус показывает, что интенсивность падает по мере прохождения слоя.

Проинтегрируем наше уравнение, предварительно разделив переменные

Исходя из того, что падающий на поверхность вещества свет имел интенсивность I=I0 , при x=0, найдем частное решение

Итак, мы получили закон поглощения света веществом ( закон Бугера), где
k -натуральный показатель поглощения.

Задача 3. Известно, что механические свойства биологических объектов изучаются с помощью вязкоупругих моделей (поршень — пружина). Одной из найболее распространенных является модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и поршня (см. рис.1).

Рис. 4. Модель Кельвина — Фойхта

Найти зависимость деформации от времени , если к модели приложена постоянная нагрузка.

Решение. Согласно условию задачи , и учитывая также, что при малых деформациях выполняется закон Гука, т.е. , а механическое напряжение, возникающее в вязкой среде пропорционально скорости деформации, т.е. , мы можем написать дифференциальное уравнение.

, или

Проинтегрируем полученное дифференциальное уравнение от начального момента времени и нулевой деформации до текущих значений t и , мы будем иметь сразу частное решение.

Потенцируя последнее выражение, получаем

Находим отсюда

Как видно из полученной формулы, в рамках модели Кельвина — Фойхта деформация при постоянной нагрузке возрастает с течением времени. Это соответствует реальным материалам. Такое свойство материала названо текучестью.

Интегрированный урок по математике и информатике “Применение дифференциальных уравнений при решении прикладных задач различных предметных областей, их анализ и графическая интерпретация”.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Муниципальное бюджетное общеобразовательное учреждение – гимназия №19

Интегрированный урок по математике и информатике

Применение дифференциальных уравнений

при решении прикладных задач

различных предметных областей,

их анализ и графическая интерпретация”.

Подготовили и провели:

Тюпин Владимир Владимирович;

учитель информатики и ИКТ

Кривоногов Константин Юрьевич.

2013-2014 учебный год

Тема урока: “Применение дифференциальных уравнений при решении прикладных задач различных предметных областей, их анализ и графическая интерпретация”.

1. Обобщение теоретического материала по теме «Неопределенный интеграл и дифференциальные уравнения».

2. Обобщение теоретического материала по теме «Прикладные среды и системы программирования для решения математических задач».

3. Исследовательская работа в группах.

4. Представление аналитического и графического решений поставленных задач.

5. Анализ результатов и выводы.

Цели и задачи урока.

1. Обобщение теоретического материала по темам: «Неопределенный интеграл и дифференциальные уравнения», «Прикладные среды и системы программирования для решения математических задач».

2. Отработка навыков решения дифференциальных уравнений аналитическим и графическим способами на основе прикладных задач предметов естественнонаучного цикла.

3. На основе полученных результатов сделать вывод о применении различных средств и методов математики и информатики к решению задач физики, химии, экологии.

Перед тем как вы начнете выполнять исследовательскую работу мы с вами должны повторить основные понятия и методы решения задач, непосредственно связанных с темой нашего урока.

1. Давайте вспомним как называется раздел математики, который мы сейчас изучаем.

2. Что называется интегральным исчислением?

Давайте вспомним базовые понятия интегрального исчисления.

3. Дайте определение первообразной функции f ( x ).

4. Что называется интегралом функции f ( x )?

Непосредственная ваша работа на уроке будет связана с решением дифференциальных уравнений. Так давайте же вспомним основные понятия связанные с ними.

5. Какое уравнение называют дифференциальным?

6. Что называется решением дифференциального уравнения?

7. Что значит решить задачу Коши для дифференциального уравнения?

Есть такое понятие связанное с дифференциальным уравнением, как порядок.

8. Что называют порядком дифференциального уравнения?

На доске представлены различные виды дифференциальных уравнений.

9. Назовите их и дайте соответствующие определения.

На доске представлены также различные виды решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.

10. От каких условий зависит появление того или иного решения данного дифференциального уравнения?

11. Что позволяет найти характеристическое уравнение?

Итак, повторив основные вопросы математики вам предстоит аналогичная работа и по информатике.

Повторив основные понятия по математике и информатики, относящиеся к теме нашего сегодняшнего урока у вас есть прекрасная возможность применить полученные знания на практике в процессе решения предложенных вам исследовательских задач.

На столе у каждой лаборатории лежат листочки с исследовательскими задачами. Каждой лаборатории предстоит сначала получить функциональную зависимость описывающую тот или иной процесс, составив и решив дифференциальное уравнение, а затем данное решение реализовать графически в среде Excel и Delphi . Это вам поможет сделать справочный материал по данной тематике так же находящийся у вас на столе.

Далее один представитель каждой лаборатории представляет нам математическую часть решения задачи на доске, а два других её графическую интерпретацию на экране.

На данном уроке мы с вами обобщили теоретический материал по темам «Неопределённый интеграл, дифференциальные уравнения» и «Прикладные среды и системы программирования для решения задач».

После чего успешно мы с вами увидели применение данного материала на практике при решении прикладных задач предметов естественнонаучного цикла.

На столах для каждого лежат листочки с домашним заданием, в котором вам предлагается решить прикладную задачу геометрического содержания способами, рассмотренными нами на уроке

Составьте уравнение кривой, для которой отрезок касательной между точками касания и осью ординат делится пополам в точке пересечения с осью абсцисс. Каковы начальные условия, если кривая проходит через точку А (1;3). Представить графическую интерпретацию решения данной задачи в прикладной среде и среде программирования.

Подводя итоги работы, можно сказать, что все учащиеся с заданием справились успешно и получают следующие отметки:


источники:

http://megaobuchalka.ru/9/21993.html

http://infourok.ru/integrirovannyy_urok_po_matematike_i_informatike______primenenie_differencialnyh_uravneniy_pri-489131.htm