Пример решения уравнений в mathcad

Тема 7. Решение дифференциальных уравнений и систем в MathCad

Краткие теоретические сведения

Для решения дифференциальных уравнений с начальными условиями система Mathcad имеет ряд встроенных функций:

rkfixed – функция для решения ОДУ и систем ОДУ методом Рунге–Кутта четвертого порядка с постоянным шагом;

Rkadapt – функция решения ОДУ и систем ОДУ методом Рунге–Кутта с переменным шагом;

Odesolve – функция, решающая ОДУ блочным методом.

Ниже приведено описание стандартной функции rkfixed с указанием параметров функции.

y – вектор начальных условий из k элементов ( k – количество уравнений в системе);

x1 и x2 – левая и правая границы интервала, на котором ищется решение ОДУ или системы ОДУ;

p – число точек внутри интервала (x1, x2), в которых ищется решение;

D – вектор, состоящий из k-элементов, который содержит первую производную искомой функции или первые производные искомых функций, если речь идет о решении системы.

Результатом работы функции является матрица из p +1 строк, первый столбец которой содержит точки, в которых получено решение, а остальные столбцы – сами решения.

На рисунке 2.7.1 приведены конкретные примеры решения различных дифференциальных уравнений и систем ОДУ в MathCAD .

Рисунок 2.7.1 – Примеры решения дифференциальных уравнений и систем

При решении дифференциального уравнения первого порядка нужно создать вектор начальных условий из одного элемента Y 1 , который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора Y , границы интервала, на котором ищется решение уравнения, например, (0 ; 2), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D . В результате получается матрица z , в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой результирующей функции. При построении графика функции первый столбец полученной матрицы указывается как аргумент, второй столбец – как функция.

При решении системы дифференциальных уравнений нужно создать вектор начальных условий из двух элементов, например, вектор v , который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора v , и границы интервала, на котором ищется решение уравнения, например, (0 ; 5), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D . В результате получается матрица s , в первом столбце которой содержатся значения аргумента искомых функций, во втором и третьем столбцах – значения самих функций при соответствующем значении аргумента. При построении графика можно воспользоваться первым столбцом полученной матрицы как аргументом, а вторым и третьим столбцами – как функциями.

На рисунке 2.7.2 приведен пример решения дифференциального уравнения второго порядка с использованием функции rkfixed . Необходимо решить дифференциальное уравнение второго порядка с заданными начальными условиями вида:

Рисунок 2.7.2 – Пример решения дифференциальных уравнений второго порядка с помощью rkfixed

Для решения уравнения с помощью функции rkfixed нужно выполнить замену переменных и привести дифференциальное уравнение второго порядка к двум дифференциальным уравнениям первого порядка. Вид этих уравнений приведен ниже.

Документ формируется точно так же, как и при решении системы ОДУ.

На рисунке 2.7.2 показана возможность вычисления вектора второй производной найденной функции – вектора а, построены графики исходной функции, функций первой и второй производных.

Практическая часть темы 7

7.1 Решение дифференциальных уравнений первого порядка

Последовательность действий для р ешения дифференциального уравнения первого порядка такова:

q сформировать вектор начальных условий из одного элемента, присвоив начальное значение искомой функции переменной с индексом, например: или (в зависимости от значения переменной ORIGIN );

q определить вектор-функцию из одного элемента, которая содержит первую производную неизвестной функции:

· набрать имя функции с двумя параметрами: первый параметр – аргумент искомой функции (независимая переменная), второй – имя вектора, содержащего искомую функцию (можно использовать имя вектора начальных условий), например, D ( x , Y );

· набрать оператор «:=» и выражение для первой производной (выразить из дифференциального уравнения), в котором вместо имени искомой функции подставлен первый элемент вектора-параметра, например, для уравнения вектор-функция будет определятся следующим образом: ( если ORIGIN = 0 , подставлять );

q присвоить некоторой переменной значение функции rkfixed , указав в скобках следующие параметры:

· первый – имя вектора начальных условий,

· второй – левая граница интервала, на котором ищется решение, в виде числовой константы,

· третий – правая граница интервала, на котором ищется решение, в виде числовой константы,

· четвертый – количество точек, в которых ищется решение,

· пятый – имя вектора-функции, описывающего первую производную, без параметров;

например: ,

(в результате получится матрица Z , в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой функции);

q вывести матрицу, содержащую решение ДУ с помощь оператора «=», например: Z = ;

q построить график найденной функции ( см. тему 5 ), указав в качестве аргумента по оси абсцисс столбец , а в качестве значения функции по оси ординат – столбец ( если ORIGIN = 0 , набирать соответственно и ).

Пример 7.1 Найти численное решение дифференциального уравнения первого порядка на интервале от 0.2 до 5 в 1000 точках, при начальном условии y (0)=0.1.

Выполнить графическую интерпретацию результатов.

7.2 Решение систем дифференциальных уравнений

Последовательность действий для р ешения системы дифференциальных уравнений первого порядка такова (описана для значения ORIGIN =0 ):

q перейти в исходной системе уравнений к однотипным обозначениям функций и выразить первые производные,

например, систему можно преобразовать в ;

q в документе MathCad сформировать вектор начальных условий, количество элементов которого равно количеству уравнений системы, присвоив его некоторой переменной (см. тему 2);

например, ;

q определить вектор-функцию, которая содержит первые производные искомых функций:

· набрать имя функции с двумя параметрами: первый параметр – аргумент искомых функций (независимая переменная), второй – имя вектора, содержащего искомые функции (можно использовать имя вектора начальных условий), например, D ( t , V );

(Замечание: если независимая переменная явно не присутствует в системе, то в качестве ее имени можно выбрать любую переменную)

· набрать оператор «:=» и вставить шаблон вектора, количество элементов которого равно количеству уравнений системы (см. тему 2)

· набрать в качестве элементов вектора правые части системы уравнений, в которых искомые функции представлены соответствующими элементами вектора-параметра, например,

;

q присвоить некоторой переменной значение функции rkfixed , указав в скобках следующие параметры:

· первый – имя вектора начальных условий,

· второй – левая граница интервала, на котором ищется решение, в виде числовой константы,

· третий – правая граница интервала, на котором ищется решение, в виде числовой константы,

· четвертый – количество точек, в которых ищется решение,

· пятый – имя вектора-функции, описывающего первые производные, без параметров;

например: ,

(в результате получится матрица Z , в первом столбце которой содержатся значения аргумента искомых функций, во втором – значения первой функции, в третьем – значения второй функции и т. д.);

q вывести матрицу, содержащую решение системы ДУ с помощь оператора «=», например: Z = ;

q построить графики найденных функций ( см. тему 5 ), указав в качестве аргумента по оси абсцисс первый столбец матрицы решений, например, , а в качестве значений функций по оси ординат – остальные столбцы матрицы через запятую, например, , и т. д.

Пример 7.2 Найти решение системы дифференциальных уравнений

на интервале от 0 до 0.5 в 1000 точках, при следующих начальных условиях: x (0)=0.1 и y (0)=1.

Выполнить графическую интерпретацию результатов.

Пример решения уравнений в mathcad

Электронный курс по MathCAD

Лекция 5.
Решение уравнений и систем.

5.1 Решение алгебраических (и других) уравнений и систем.

5.2 Решение дифференциальных уравнений и систем (задача Коши и граничные задачи).

5.3 Задание.

5.1 Решение алгебраических (и других) уравнений и систем.


Линейные алгебраические уравнения.

Определение: Уравнение вида ax+b=0 с заданным базовым множеством Gx, a из Ga , b из Gb называется линейным уравнением.

Этапы решения при помощи Mathcad:

  1. Ввести уравнение (знак «=» вводится при помощи комбинации [Ctrl++]).
  2. Выделить курсором переменную, относительно которой должно быть решено уравнение.
  3. Выбрать команду Solve (Вычислить) подменю Variable (Переменные) меню Symbolics (Символы).

При решении линейных уравнений (без параметров) или дробных уравнений, которые сводятся к линейным, MathCAD находит все существующие решения. Однако при этом следует правильно интерпретировать сообщения, выдаваемые системой.

Нормальный случай.

В качестве решения MathCAD выдает число — это означает,

что уравнение однозначно разрешимо (однозначное решение линейного уравнения над множеством действительных чисел, которое одновременно является областью определения этого уравнения).

Рассмотрим другой пример:

После выполнения описанных выше действий для нахождения решения Mathcad выдает сообщение о том, что решение не найдено.

Проанализировав данное уравнение приходим к выводу, что выданное Mathcad сообщение означает, что решений нет L=<>.

MathCAD выдает сообщение «Решение не найдено», даже если уравнение имеет «формальное решение», которое не принадлежит области определения (смотри примеры ниже).

Многозначность.
Если в качестве решения MathCAD выдает имя переменной, это означает, что множество решений уравнения совпадает с областью определения. Однако, такие понятия, как множество решений уравнения и область определения, отсутствуют в MAthCAD и он не выписывает оболасть определения. Вы можете найти область определения, решая с помощью Mathcad систему неравенств или уравнений

Такой результат, выданный Mathcad после выполнения действий по решению уравнения, означает, что любое значение x из базового множества удовлетворяет этому уравнению, т. е. L=R.

Дробные уравнения

Команда Solve (Вычислить) из подменю Variable (Переменные) меню Symbolics (Символы)выдает множество решений: L = .

Решение 6 копируем в буфер, а затем выделяем маркером переменную x и активизируем команду Substitute (Замена) подменю Variable (Переменные) меню Symbolics (Символы) для замены переменной значением 6.

Рассмотрим другой пример:

Последнее уравнение (рисунок справа) условно эквивалентно уравнению:2x=4. Решение уравнения Mathcad: 2. Формальное решение x = 2 не входит в область допустимых значений. Mathcad выдает правильное сообщение!

Здесь также правильное решение: множество решений совпадает с областью допустимых значений L = D. Только следует учесть, что D=>.

Квадратные уравнения и алгебраические уравнения высших порядков.

Определение: Уравнение P(x)=0 называется алгебраическим уравнением n-го порядка, если P(x) представляет собой полином степени n, при n=2 данное уравнение называется квадратным уравнением.

При решении такого рода уравнения необходимо выполнить те же действия, что и при решении линейных уравнений.

Квадратное уравнение.

Команда Solve (Вычислить) подменю Variable (Переменные) меню Symbolics (Символы) дает решение в виде вектора: L= .

Иррациональное уравнения (уравнения с радикалами).

Корни (радикалы) могут вычисляться в MathCAD либо при помощи знака корня (клавиши [Ctrl+\]), либо как степени (клавиша [^] с дробными показателями. Знак квадратного корня вводится нажатием клавиши [\]. Знак корня и квадратный корень можно найти на панели Calculator (Калькулятор). Последовательность действий при решении уравнений с радикалами та же, что и при решении рассмотренных ранее уравнений.

С точки зрения теории, между решениями уравнений с радикалами и решением алгебраических уравнений имеется два важных различия, по крайней мере, при нахождении действительных решений.

  • Радикалы определены не везде в действительной области. Это обстоятельство приводит к необходимости находить область определени, прежде чем решать само уравнение. Данная проблема справедливо игнорируется MathCAD, поскольку он не может знать, во множестве каких чисел (действительных или комплексных) вы намерены решать уравнение. Выход: вы можете самостоятельно найти область определения, воспользовавшись при этом возможностями MathCAD, связанными с решениями неравенств.
  • Вторая проблема, возникающая при решении уравнений с радикалами, имеет принципиальный характер. Функция x 2 (как и любая другая функция с четным показателем) на является инъективной (проблема главных значений). В связи с этим возведение в квадрат обеих частей уравнения, содержащего квадратные корни, не является эквивалентным преобразованием. Как всегда, при применении к обеим частям уравнения не инъективного преобразования увеличивается множество решений. В результате в него могут войти «фиктивные» решения. Как ни удивительно, MAthCAD сам производит проверку решений на «фиктивность».

Классический случай решения уравнения с радикалами.

Mathcad распознает «фиктивные» решения (которые могут возникнуть в результате неэквивалентного преобразования «возведение в квадрат») и выдает верное сообщение: Решение не найдено. L =

В приведенных примерах демонстрируется способность MathCAD находить область определения иррационального уравнения путем решения неравенств.

Уравнения с радикалами третьей степени, как и уравнения с комплексными коэффициентами, не представляют для MathCAD никакой сложности.

Уравнения с параметрами.
При решении уравнений с параметрами MathCAD ведет себя по-разному, в зависимости от того, каким образом производятся символьные вычисления — с помощью символьного знака равенства или команд меню Symbolics.

В данном примере использование палитры символьных преобразований позволяет решить уравнение (solve) и упрстить результат (simplify)

Пример решения уравнений в mathcad

Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства система уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

Пример использования блока given…find для решения системы уравнений:


источники:

http://msk.edu.ua/ivk/Informatika/Uch_posobiya/MathCad/detc/l5.htm

http://allmathcad.com/ru/reshenie-uravnenij-i-sistem-uravnenij.html