Пример решения уравнения с производной

Примеры решений производных

  • Попробуйте найти производные от приведенных ниже функций.
  • Нажмите на изображение или стрелку, чтобы попасть на страницу с подробным решением.

Примеры решений производных от явных функций

Найдите производные следующих функций, зависящих от переменной x :
Решение
Решение
Решение

Здесь , , , – постоянные.

Примеры решений производных высших порядков от явных функций

Найти производные первого и второго порядка следующей функции:
.
Решение

Найти производную третьего порядка:
.
Решение

Найти производную шестого порядка следующей функции:
.
Решение

Вычислить n-ю производную функции
.
Решение

Найти n-ю производную следующей функции:
,
где и – постоянные.
Решение

Примеры решения производных от функций, заданных параметрическим способом

Найдите производную от функции, заданной параметрическим способом:

Решение

Найдите производную , где и выражены через параметр :

Решение

Найдите производные второго и третьего порядка от функции, заданной параметрическим способом:

Решение

Примеры решений производных от неявных функций

Найдите производную первого порядка от функции, заданной неявно уравнением:
.
Решение

Найти производную второго порядка от неявно заданной функции:
.
Решение

Найти производную третьего порядка при от функции, заданной уравнением:
.
Решение

Касательная и нормаль к графику функции

1. Найти уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали. Решение
2. Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде
, проведенных в точке . Решение
3. Заданной в неявном виде . Решение
4. Найти угол между кривыми и . Решение

Автор: Олег Одинцов . Опубликовано: 20-02-2017 Изменено: 30-06-2021

Найти производную: алгоритм и примеры решений

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную, надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного — в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

.

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

.

Из таблицы производных выясняем, что производная «икса» равна единице, а производная синуса — косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

.

Пример 2. Найти производную функции

.

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200. ), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего «икса». Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны, т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной:

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные — в статье «Производная произведения и частного функций».

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое uv , в котором u — число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка — механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие «Производная суммы дробей со степенями и корнями».

Если же перед Вами задача вроде , то Вам на занятие «Производные простых тригонометрических функций».

Пошаговые примеры — как найти производную

Пример 3. Найти производную функции

.

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители — суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, «икс» у нас превращается в единицу, а минус 5 — в ноль. Во втором выражении «икс» умножен на 2, так что двойку умножаем на ту же единицу как производную «икса». Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на калькуляторе производных онлайн.

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие «Производная суммы дробей со степенями и корнями».

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок «Производные простых тригонометрических функций».

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых — квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн.

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Проверить решение задачи на производную можно на калькуляторе производных онлайн.

Найти производные самостоятельно, а затем посмотреть решения

Пример 7. Найти производную функции

.

Пример 8. Найти производную функции

.

Пример 9. Найти производную функции

, где a и b — константы.

Пример 10. Найти производную функции

.

Пример 11. Найти производную функции

.

Ещё больше домашних заданий на нахождение производных

Продолжаем искать производные вместе

Пример 12. Найти производную функции

.

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных — под номером 3), получим

.

Пример 13. Найти производную функции

Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим

Пример 14. Найти производную функции

Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:

Теперь вычислим производные в числителе и перед нами уже требуемый результат:

Пример 15.Найти производную функции

Шаг1. Применяем правило дифференцирования суммы:

Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных — номер 5):

Шаг3. В частном знаменатель — также корень, только не квадратный. Поэтому преобразуем этот корень в степень:

и далее дифференцируем частное, не забывая, что число 2 в первом слагаемом числителя — это константа, производная которой равна нулю, и, следовательно всё первое слагаемое равно нулю:

Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:

,

а производная, требуемая в условии задачи:

Ещё больше домашних заданий на нахождение производных

Напоминаем, что чуть более сложные примеры на производную произведения и частного — в статьях «Производная произведения и частного функций» и «Производная суммы дробей со степенями и корнями».

Также настоятельно рекомендуем изучить производную сложной функции.

Простейшие типовые задачи с производной. Примеры решений

После изучения азов нахождения производной в статьях Как найти производную? Примеры решений и Производная сложной функции мы рассмотрим типовые задачи, связанные с нахождением производной. Желающие улучшить свои навыки дифференцирования также могут ознакомиться с уроком Сложные производные. Логарифмическая производная.

Помимо нового материала у вас есть возможность дополнительно «набить руку» на нахождении производных. Действительно, если речь пойдет о типовых задачах на производную, то, как минимум, во всех примерах нужно будет найти эту самую производную. Я постараюсь рассмотреть приёмы решения и хитрости, которые не встречались в других статьях.

Вот наше аппетитное меню:

Повар на раздаче.

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Вычислить производную функции в точке

Справка: Следующие способы обозначения функции эквивалентны:


В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке :

Небольшой разминочный пример для самостоятельного решения:

Вычислить производную функции в точке

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Вычислить производную функции в точке .
Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение . Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке :

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому что арктангенсов на студенческий век ещё хватит.

Вычислить производную функции в точке .

Это пример для самостоятельного решения.

Уравнение касательной к графику функции

Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной к графику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.

Рассмотрим «демонстрационный» простейший пример.

Составить уравнение касательной к графику функции в точке с абсциссой . Я сразу приведу готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):

Строгое определение касательной даётся с помощью определения производной функции, но пока мы освоим техническую часть вопроса. Наверняка практически всем интуитивно понятно, что такое касательная. Если объяснять «на пальцах», то касательная к графику функции – это прямая, которая касается графика функции в единственной точке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.

Применительно к нашему случаю: при касательная (стандартное обозначение) касается графика функции в единственной точке .

И наша задача состоит в том, чтобы найти уравнение прямой .

Как составить уравнение касательной в точке с абсциссой ?

Общая формула знакома нам еще со школы:

Значение нам уже дано в условии.

Теперь нужно вычислить, чему равна сама функция в точке :

На следующем этапе находим производную:

Находим производную в точке (задание, которое мы недавно рассмотрели):

Подставляем значения , и в формулу :



Таким образом, уравнение касательной:

Это «школьный» вид уравнения прямой с угловым коэффициентом. В высшей математике уравнение прямой на плоскости принято записывать в так называемой общей форме , поэтому перепишем найденное уравнение касательной в соответствии с традицией:

Очевидно, что точка должна удовлетворять данному уравнению:

– верное равенство.

Следует отметить, что такая проверка является лишь частичной. Если мы неправильно вычислили производную в точке , то выполненная подстановка нам ничем не поможет.

Рассмотрим еще два примера.

Составить уравнение касательной к графику функции в точке с абсциссой

Уравнение касательной составим по формуле

1) Вычислим значение функции в точке :

2) Найдем производную. Дважды используем правило дифференцирования сложной функции:

3) Вычислим значение производной в точке :

4) Подставим значения , и в формулу :





Выполним частичную проверку:
Подставим точку в найденное уравнение:

– верное равенство.

Составить уравнение касательной к графику функции в точке с абсциссой

Полное решение и образец оформления в конце урока.

В задаче на нахождение уравнения касательной очень важно ВНИМАТЕЛЬНО и аккуратно выполнить вычисления, привести уравнение прямой к общему виду. И, конечно же, ознакомьтесь со строгим определением касательной, после чего закрепите материал на уроке Уравнение нормали, где есть дополнительные примеры с касательной.

Дифференциал функции одной переменной

С формально-технической точки зрения найти дифференциал функции – это «почти то же самое, что найти производную».

Производная функции чаще всего обозначается через .

Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек»)

Дифференциал функции одной переменной записывается в следующем виде:

Другой вариант записи:

Простейшая задача: Найти дифференциал функции

1) Первый этап. Найдем производную:

2) Второй этап. Запишем дифференциал:

Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений.

Помимо «комбинированных» задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции:

Найти дифференциал функции

Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:

(корень пятой степени относится именно к синусу).

Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:

Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение . Найдем производную, используя правило дифференцирования сложной функции два раза:

Запишем дифференциал, при этом снова представим в первоначальном «красивом» виде:

Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).

Найти дифференциал функции

Это пример для самостоятельного решения.

Следующие два примера на нахождение дифференциала в точке:

Вычислить дифференциал функции в точке

Найдем производную:

Опять, производная вроде бы найдена. Но в эту бодягу еще предстоит подставлять число, поэтому результат максимально упрощаем:

Труды были не напрасны, записываем дифференциал:

Теперь вычислим дифференциал в точке :

В значок дифференциала единицу подставлять не нужно, он немного из другой оперы.

Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на . Окончательно:

Вычислить дифференциал функции в точке . В ходе решения производную максимально упростить.

Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.

Вторая производная

Всё очень просто. Вторая производная – это производная от первой производной:

Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»). Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое.

Рассмотрим простейший пример. Найдем вторую производную от функции .

Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:

Теперь находим вторую производную:

Рассмотрим более содержательные примеры.

Найти вторую производную функции

Найдем первую производную:

На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: :

Находим вторую производную:

Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :

Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.

Отмечу, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.

Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.

Например: Вычислим значение найденной второй производной в точке :

Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.

Найти вторую производную функции . Найти

Это пример для самостоятельного решения.

Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются чуть реже.

Решения и ответы:

Пример 2: Найдем производную:

Вычислим значение функции в точке :

Пример 4: Найдем производную:

Вычислим производную в заданной точке:

Пример 6: Уравнение касательной составим по формуле
1) Вычислим значение функции в точке :

2) Найдем производную. Перед дифференцированием функцию выгодно упростить:


3) Вычислим значение производной в точке :

4) Подставим значения , и в формулу :



Пример 8: Преобразуем функцию:

Найдем производную:

Запишем дифференциал:

Пример 10: Найдем производную:

Запишем дифференциал:

Вычислим дифференциал в точке :

Пример 12: Найдем первую производную:

Найдем вторую производную:

Вычислим:

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


источники:

http://function-x.ru/derivative.html

http://mathprofi.net/tipovye_zadachi_s_proizvodnoi.html