Примеры электрохимической коррозии металлов уравнения

Примеры электрохимической коррозии металлов уравнения

8.2 ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Причиной электрохимической коррозии * является возникновение на поверхности металла короткозамкнутых гальванических элементов *.

В тонком слое влаги, обычно покрывающем металл, растворяются кислород, углекислый, сернистый и другие газы, присутствующие в атмосферном воздухе. Это создает условия соприкосновения металла с электролитом *. Различные участки поверхности любого металла обладают разными потенциалами. Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия может развиваться в результате контакта различных металлов. В этом случае будет возникать не микр о- , а макрогальванопара , и коррозия называется контактной (см. детальную классификацию видов коррозии). Сочетания металлов, сильно отличающихся значениями электродных потенциалов *, в технике недопустимы (например, алюминий – медь). В случае коррозии, возникающей при контакте какого-либо металла со сплавом, последний имеет потенциал, соответствующий наиболее активному металлу, входящему в состав сплава. Например, при контакте латуни (сплав цинка и меди) с железом корродировать будет латунь за счет наличия в ней цинка.

Представим схематично работу короткозамкнутого гальванического элемента, возникающего на поверхности металла, подверженного коррозии в электролите * (рисунок 8.1). Анодный участок имеет более электроотрицательный потенциал, поэтому на нем идет процесс окисления металла. Образовавшиеся в процессе окислен ия ио ны переходят в электролит, а часть освободившихся при этом электронов может перемещаться к катодному участку (на рисунке 8.1 показано стрелками). Процесс коррозии будет продолжаться в том случае, если электроны, перешедшие на катодный участок, будут с него удаляться. Иначе произойдет поляризация электродов *, и работа коррозионного гальванического элемента прекратится.

Рисунок 8.1 – Схема электрохимической коррозии. Д – деполяризатор

Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной. Тип деполяризации (катодный процесс) зависит от реакции среды раствора электролита.

В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере Имеется в виду атмосфера с примесью газообразного HCl. . В этом случае железо будет анодом ( E ° = –0,44В), а медь – катодом ( E ° =+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризац ии ио нами водорода, которые присутствуют в электролите:

А: Fe – 2e → Fe 2+ – окисление

К: 2 H + + 2e → H2 ↑ – восстановление

Схема возникающего короткозамкнутого гальванического элемента выглядит следующим образом:

A (–) Fe | HCl | Cu (+) К

В нейтральной среде коррозия протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере. Если коррозии во влажном воздухе подвергается железо с примесями меди, то электродные процессы можно записать в виде:

(А) Fe – 2e → Fe 2+ – окисление

(К) 2 H2O + O2 + 4e → 4 OH – – восстановление

У поверхности металла в электролите протекают следующие реакции:

Fe 2+ + 2 OH – → Fe( OH)2

Основная масса черных металлов разрушается вследствие процесса ржавления, в основе которого лежат вышеуказанные реакции.

Коррозия металла в результате неравномерного доступа кислорода . Случаи электрохимической коррозии, возникающей вследствие неравномерной аэрации кислородом различных участков металла, очень часто встречаются в промышленности и в подземных сооружениях. Примером может служить коррозия стальной сваи, закопанной в речное дно (рис 8.2).

Рисунок 8.2 – Коррозия в результате неравномерного доступа кислорода. Б – техническое сооружение; А – анодный участок; К – катодный участок.

Часть конструкции, находящаяся в воде, омывается растворенным в ней кислородом и, в случае возникновения условий для электрохимической коррозии, будет выполнять роль катода. Другая же часть конструкции, находящаяся в почве, будет анодом и подвергнется разрушению.

Коррозия металлов. Виды коррозии металлов

Определение коррозии

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов

КОРРОЗИЯ МЕТАЛЛОВ

См. также № 13/2006, с. 19

Цели. Сформировать представления о коррозии с точки зрения окислительно-восстановительных процессов; показать значение коррозии для народного хозяйства; продолжить формирование у учащихся умений устанавливать причинно-следственные связи между строением и свойствами металлов.

Оборудование. Железные гвозди из поставленных ранее опытов по их коррозии в водопроводной воде и «морской» воде (гвоздь без контакта с другим металлом и гвозди в контакте с медью и цинком). (Эксперимент мог быть домашним заданием.)

Коррозия вызывается окислительно-восстановительными реакциями, в которых металл в результате взаимодействия с каким-либо веществом из своего окружения превращается в нежелательное соединение. Одним из наиболее известных коррозионных процессов является ржавление железа. 20% железа, производимого ежегодно в США, идет на замену железных изделий, пришедших в негодность из-за ржавления.

Различают несколько видов коррозии.

А. По площади и характеру поражения: сплошная, точечная, язвенная, межкристаллическая.

Б. По природе агрессивных сред: воздушная, почвенная, морская, биологическая (вызванная водорослями, моллюсками, плесенью), коррозия в смазке, газовая.

В. По механизму возникновения: химическая, электрохимическая, электрическая (под действием блуждающих токов).

Химическая коррозия

При химической коррозии идет окисление металла без возникновения цепи электрического тока:

Для поверхности алюминия этот процесс благоприятен, т.к. оксидная пленка плотно прилегает к поверхности металла и нет дальнейшего допуска кислорода к металлу.

Почему не рекомендуют варить овощи в алюминиевой посуде? (Кислая среда растворяет оксидную пленку, и алюминий в виде солей поступает в организм человека.)

Оксидная пленка железа очень рыхлая (вспомните какой-либо ржавый предмет – как только вы берете его в руки, остаются следы ржавчины) и не прилегает плотно к поверхности металла, поэтому кислород проникает все дальше и дальше, коррозия идет до полного разрушения предмета.

Электрохимическая коррозия одного металла

При электрохимической коррозии возникает электрическая цепь. При этом могут быть случаи коррозии как одного металла, так и металлов в контакте. Для возникновения электрохимической коррозии нужно наличие кислорода и воды.

Рассмотрим случай, когда контакта металлов нет, причем металл (железо) находится в воздухе.

Некоторые участки поверхности железа служат анодом, на котором происходит его окисление
(E° – стандартный электродный потенциал):

Fe (тв.) = Fe 2+ (водн.) + 2e, E °окисл = 0,44 B.

Образующиеся при этом электроны перемещаются по металлу к другим участкам поверхности, которые играют роль катода. На них происходит восстановление кислорода:

Этот процесс иллюстрируется на рис. 1.

Рис. 1.
Схема электрохимической коррозии железа
без контакта с другими металлами

В восстановлении кислорода участвуют ионы Н + . Если концентрация Н + понижается (при повышении рН), восстановление О2 затрудняется. Замечено, что железо, находящееся в контакте с раствором, рН которого выше 9–10, не корродирует.

В процессе коррозии образующиеся на аноде ионы Fe 2+ окисляются до Fe 3+ :

Поскольку роль катода обычно играет та часть поверхности, которая лучше всего обеспечена притоком кислорода, ржавчина чаще всего появляется именно на этих участках. Если вы внимательно осмотрите лопату, простоявшую некоторое время на открытом воздухе с налипшей на лезвии грязью, то заметите, что под грязью на поверхности металла образовались углубления, а ржавчина появилась повсюду, куда мог проникнуть О2.

С усилением коррозии в присутствии солей часто сталкиваются автомобилисты в тех местностях, где в зимнее время для борьбы с гололедицей дороги обильно посыпают солью. Влияние солей объясняется тем, что образуемые ионы создают электролит, необходимый для возникновения замкнутой электрической цепи.

Наличие анодного и катодного участков на поверхности железа приводит к созданию на ней двух неодинаковых химических окружений. Они могут возникнуть вследствие присутствия примесей или дефектов в кристаллической решетке (по-видимому, обусловленных напряжением внутри металла). В местах, где есть примеси или дефекты, микроскопическое окружение конкретного атома железа может вызвать некоторое увеличение или уменьшение его степени окисления по сравнению с «нормальными» атомами в кристаллической решетке. Поэтому такие места способны играть роль анодов или катодов. Сверхчистое железо, в котором количество подобных дефектов сведено к минимуму, намного меньше корродирует по сравнению с обычным железом.

Кутубская колонна
в Индии

Классический пример – знаменитая Кутубская колонна в Индии близ Дели, которая уже почти полторы тысячи лет стоит и не разрушается, несмотря на жаркий и влажный климат. Сделана она из железа, в котором почти нет примесей. Как удалось древним металлургам получить такой чистый металл, до сих пор остается загадкой.

В начале прошлого столетия по заказу одного американского миллионера была построена роскошная яхта «Зов моря». Днище ее было обшито монель-металлом (сплав меди и никеля), а рама руля, киль и другие детали были изготовлены из стали. Когда яхту спустили на воду, возник гигантский гальванический элемент, состоящий из катода (монель-металла), стального анода и раствора электролита – морской воды.

Последствия были ужасными! Еще до выхода в открытое море яхта полностью вышла из строя, так что «Зов моря» остался в истории мореплавания как пример конструкторской недальновидности и самонадеянного невежества. Попробуем разобраться, что же произошло.

Рассмотрим контакт двух металлов на примере олова и железа.

Железо часто покрывают другим металлом, например оловом, цинком или хромом, чтобы защитить от коррозии. Так называемую «белую жесть» получают, покрывая тонким слоем олова листовое железо. Олово защищает железо до тех пор, пока защитный слой остается неповрежденным. Стоит его повредить, как на железо начинают воздействовать воздух и влага, олово даже ускоряет процесс коррозии, потому что служит катодом в электрохимическом процессе. Сравнение окислительных электродных потенциалов железа и олова показывает, что железо окисляется легче олова:

Fe (тв.) = Fe 2+ (водн.) + 2e, E °окисл = 0,44 B,

Sn (тв.) = Sn 2+ (водн.) + 2e, E °окисл = 0,14 B.

Поэтому железо служит в этом случае анодом и окисляется, как показано на рис. 2.

Рис. 2.
Схема электрохимической коррозии
при контакте железа и олова

Оцинкованное железо получают, покрывая его тонким слоем цинка. Цинк защищает железо от коррозии даже после нарушения целостности покрытия. В этом случае железо в процессе коррозии играет роль катода, потому что цинк окисляется легче железа (рис. 3):

Zn (тв.) = Zn 2+ (водн.) + 2e, E °окисл = 0,76 B.

Следовательно, цинк играет роль анода и корродирует вместо железа.

Рис. 3.
Схема электрохимической коррозии
при контакте железа и цинка

Электрическая коррозия (электрокоррозия)

Блуждающие токи, исходящие от трамвая, метро, электрических железных дорог и различных электроустановок, работающих на постоянном токе, вызывают электрокоррозию. Такие токи разрушают подземные металлические сооружения, трубопроводы, электрокабели, приводят к появлению на металлических предметах, находящихся в земле, участков входа и выхода постоянного тока. Вследствие этого на металле образуются катодные и анодные зоны, причем анодные зоны, т.е. места выхода тока, подвергаются коррозии (рис. 4).

Рис. 4.
Схема электрокоррозии
под действием блуждающих токов:
1 – провод; 2 – рельс; 3 – влажный грунт;
4 – труба; 5 – электродвигатель трамвая;
6 – сопротивление в стыке рельса

Блуждающие токи достигают 300 А и действуют в радиусе нескольких десятков километров. Процесс в анодных зонах:

Процессы в катодных зонах:

Блуждающие токи от источников переменного тока вызывают слабую коррозию у подземных изделий из стали и сильную у изделий из цветных металлов.

Коррозия металлов протекает непрерывно и причиняет огромные убытки. Подсчитано, что прямые потери от коррозии железа составляют около 10% от его ежегодной выплавки. В результате коррозии металлические изделия теряют свои ценные технические свойства.

Ежегодные потери металла при коррозии оборудования, используемого только в животноводстве, составляют около 60 тыс. тонн. Поэтому защита металлов от коррозии – очень важная задача.

Основные способы защиты от коррозии

1. Защищаемый металл играет роль катода. Такой способ защиты называется катодным (другое название – протекторная защита). Тот металл, который заведомо будет разрушаться в паре, называется протектором. Примеры такой защиты – оцинкованное железо (железо – катод, цинк – анод), «белая жесть» (оловом покрывают листовое железо), контакт магния и железа (магний – протектор). Магниевый анод окружают смесью гипса, сульфата натрия и глины, чтобы обеспечить проводимость ионов. Труба играет роль катода в гальваническом элементе (рис. 5).

Рис. 5.
Катодная защита
железных водопроводных труб

2. Электрозащита. Конструкция, находящаяся в среде электролита, соединяется с другим металлом (обычно куском железа, рельсом и т.п.), но через внешний источник тока. При этом защищаемую конструкцию подключают к катоду, а металл – к аноду источника тока. В этом случае электроны отнимаются от анода источником тока, анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя. Электрозащита имеет преимущество перед протекторной защитой: радиус действия первой около 2000 м, второй – 50 м.

3. Если металл, например хром, создает плотную оксидную пленку, его добавляют в железо, и образуется сплав – нержавеющая сталь. Такие стали называются легированными.

Многие сплавы, которые содержат незначительное количество добавок дорогих и редких металлов, приобретают замечательную устойчивость к коррозии и прекрасные механические свойства. Например, добавки родия или иридия к платине так сильно повышают ее твердость, что изделия из нее – лабораторная посуда, детали машин для получения стекловолокна – становятся практически вечными.

4. Металл можно пассивировать – обработать его поверхность так, чтобы образовалась тонкая и плотная пленка оксида, которая препятствует разрушению основного вещества. Например, концентрированную серную кислоту можно перевозить в стальных цистернах, т.к. она образует на поверхности металла тонкую, но очень прочную пленку.

5. Ингибиторы (замедлители) коррозии тоже переводят металл в пассивное состояние, образуя на его поверхности тонкие защитные пленки. Пример такого замедлителя коррозии – гексаметилентетрамин (CH2)6N4. В последние годы разработаны летучие, или атмосферные, ингибиторы. Ими пропитывают бумагу, которой обертывают металлические изделия. Пары ингибиторов адсорбируются на поверхности металла и образуют на ней защитную пленку.

6. Защитить металл можно, препятствуя проникновению к нему влаги и кислорода, – например, нанося на металл слой краски или лака. (На покраску Эйфелевой башни уже затратили средств больше, чем при ее создании.)

ПРАКТИЧЕСКАЯ РАБОТА

За неделю до урока были поставлены опыты по коррозии металлов в пробирках с водопроводной (№ 1–4) и «морской» (№ 5–8) водой (рис. 6).

Рис. 6.
Гвозди, помещенные в водопроводную
(пробирки с темными крышками) и «морскую»
(пробирки со светлыми крышками) воду

№ 2 и № 6 – железный гвоздь в контакте с цинком;

№ 3 и № 7 – железный гвоздь в контакте с медью;

№ 4 и № 8 – железный гвоздь, покрытый лаком для ногтей.

«Морскую» воду готовят, растворяя в ней соли кальция, магния и натрия.

Рис. 7 демонстрирует результаты опытов по коррозии металлов в «морской» воде.

Рис. 7.
Гвозди, вынутые через неделю
из «морской» воды

№ 6 – гвоздь не подвергся коррозии, но цинк уменьшился в размере;

№ 7 – наличие сильной ржавчины, гвоздь уменьшился в размере;

№ 8 – гвоздь не подвергся коррозии (покрыт лаком).

1. Рассмотрите коррозию железа в водопроводной и «морской» воде (пробирки № 1 и № 5). Где процесс протекает быстрее и чем вы это объясните?

(П р и м е р н ы й о т в е т. В «морской» воде более заметно выражены все проявления коррозии из-за агрессивности среды, которая создается растворимыми солями (гидролиз солей).)

2. Сравните результаты опытов по коррозии при контакте железа и цинка в водопроводной и «морской» воде (пробирки № 2 и № 6).

(П р и м е р н ы й о т в е т. При контакте железа с цинком явление коррозии железа практически не выражено. В данном случае электрохимическая коррозия затронула цинк, как более активный металл.)

3. Сравните результаты опытов по коррозии при контакте железа и медной проволоки в водопроводной и «морской» воде (пробирки № 3 и № 7).

(П р и м е р н ы й о т в е т. При контакте железа с медью усиливается разрушение железа вследствие электрохимической коррозии, т. к. железо более активный металл, чем медь (в электрохимическом ряду напряжений металлов железо стоит левее меди).)

4. Зарисуйте результаты опытов. Используя рис. 1–3, составьте схемы реакций, происходящих в каждом опыте.

1. Напишите схему коррозии на яхте «Зов моря».

2. Поставьте опыты по коррозии железных гвоздей в «Фанте» и в растворе соды. Через неделю принесите гвозди в школу, чтобы обсудить результаты опытов.

3. Рассмотрите процесс коррозии при соединении медной трубы с гальванизированной (оцинкованной) стальной трубой, если обе трубы находятся в земле.

4. Как будет протекать процесс коррозии в том случае, если железную водосточную трубу прибить к дому алюминиевыми гвоздями?

(О т в е т. В местах соприкосновения двух металлов образуется гальванический элемент. Металл, который окисляется легче, играет при этом роль анода, а второй металл – роль катода. Из сравнения стандартных электродных потенциалов алюминия и железа следует, что алюминий будет играть роль анода. Таким образом, вблизи алюминиевого гвоздя водосточная труба будет защищена от коррозии, потому что железо в этой паре играет роль катода. Однако алюминиевый гвоздь в этих условиях быстро корродирует, и в конце концов труба упадет.)

5. Почему цинк не используют при изготовлении консервных банок для покрытия им железа?

(О т в е т. Цинк менее пригоден, чем олово, при изготовлении консервных банок, т. к. расположен левее олова в ряду напряжений металлов, поэтому цинк легче подвергается действию кислот, содержащихся во фруктовых соках.)

Литература

Маршанова Г.Л. 500 задач по химии. М.: Издат-школа «РАЙЛ», 1997; Хомченко Г.П., Цитович И.Г. Неорганическая химия, М.: Высшая школа, 1987; Фримантл М. Химия в действии. М.: Мир, 1991; Браун Т., Лемей Г.Ю. Химия в центре наук. М.: Мир, 1983; Химия. Пособие-репетитор. Под ред. А.С.Егорова. Ростов-на-Дону: Феникс, 1996; Венецкий С.И. Рассказы о металлах. М.: Металлургия, 1986.


источники:

http://zadachi-po-khimii.ru/obshaya-himiya/korroziya-metallov.html

http://him.1sept.ru/article.php?ID=200601705