Примеры и задачи по уравнение лагранжа

Метод множителей Лагранжа. Пример решения

Решение. Найдем экстремум функции F(X)=9·x1+x1 2 +6·x2+x2 2 , используя сервис функция Лагранжа :
L( X , λ )=F( X )+∑λi·φi( X )
где F( X ) — целевая функция вектора X , φi( X ) — ограничения в неявном виде (i=1..n)
В качестве целевой функции, подлежащей оптимизации, в этой задаче выступает функция:
F(X) = 9·x1+x1 2 +6·x2+x2 2
Перепишем ограничение задачи в неявном виде: φi( X )= x1+x2-150=0
Составим вспомогательную функцию Лагранжа: L( X , λ ) = 9·x1+x1 2 +6·x2+x2 2 + λ(x1+x2-150)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·x1+λ+9 = 0
∂L/∂x2 = λ+2·x2+6 = 0
∂F/∂λ = x1+x2 -150= 0
Систему решаем с помощью метода Гаусса или используя формулы Крамера.

Запишем систему в виде:

Для удобства вычислений поменяем строки местами:

Добавим 2-ую строку к 1-ой:

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

Из 1-ой строки выражаем x3

Из 2-ой строки выражаем x2

Из 3-ой строки выражаем x1

Таким образом, чтобы общие издержки производства были минимальны, необходимо производить x1 = 74.25; x2 = 75.75.

Задание . По плану производства продукции предприятию необходимо изготовить 50 изделий. Эти изделия могут быть изготовлены 2-мя технологическими способами. При производстве x1 — изделий 1-ым способом затраты равны 3x1+x1 2 (т. руб.), а при изготовлении x2 — изделий 2-ым способом они составят 5x2+x2 2 (т. руб.). Определить сколько изделий каждым из способов необходимо изготовить, чтобы общие затраты на производство были минимальные.

Решение: составляем целевую функцию и ограничения:
F(X) = 3x1+x1 2 + 5x2+x2 2 → min
x1+x2 = 50

Пример №2 . В качестве целевой функции, подлежащей оптимизации, выступает функция: F(X) = x1·x2
при условии: 3x1 + x2 = 6.
Перепишем ограничение задачи в неявном виде: φi( X )=3x1 + x2 — 6 = 0
Составим вспомогательную функцию Лагранжа: L( X , λ )=x1·x2+λ(3x1 + x2 — 6)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 3·λ+x2 = 0
∂L/∂x2 = x1+λ = 0
∂F/∂λ = 3·x1 + x2-6 = 0
Решаем данную систему методом Гаусса.
Запишем систему в виде:

Добавим 2-ую строку к 1-ой:

Умножим 2-ую строку на (3). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Добавим 2-ую строку к 1-ой:

Из 1-ой строки выражаем x3

Из 2-ой строки выражаем x2

Из 3-ой строки выражаем x1

Точка экстремума (1;3). Значение функции в точке экстремума F(1;3)=3.

Пример №3 . Рассмотрим функцию: F(X)=3·x1 2 +2·x2 2 -3·x1+1
и условия-ограничения: x1 2 + x2 2 = 4
L( X , λ )=3·x1 2 +2·x2 2 -3·x1+1 + λ(x1 2 + x2 2 — 4)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·x1·(λ+3)-3 = 0
∂L/∂x2 = 2·(λ+2)·x2 = 0
∂F/∂λ = x1 2 +x2 2 -4 = 0
Выражаем из первого уравнения x1:

Из второго уравнения получаем x2 = 0.
Подставляем в третье уравнение:
или
Перепишем в виде: λ+3 =3/4 откуда λ=-9/4.
Подставляя λ в выражение для x1, получаем:

Стационарная точка (2;0). Значение функции в стационарной точке: F(2;0) = 7.

Пример №4 . Найдем локальные стационарные точки функции:
F(X) = 3·x1·x2
g(x): 2·x1+x2=3
Перепишем ограничение задачи в неявном виде: 2·x1+x2-3 = 0
Составим вспомогательную функцию Лагранжа:
L = 3·x1·x2 + λ·(2·x1+x2-3)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·λ+3·x2 = 0
∂L/∂x2 = 3·x1+λ = 0
∂F/∂λ = 2·x1+x2-3 = 0
Данную систему решаем методом обратной матрицы:
Запишем матрицу в виде:
Вектор B: B T = (0,0,3)
Главный определить: ∆ = 0·(0·0-1·1)-3·(3·0-1·2)+2·(3·1-0·2) = 12
Транспонированная матрица:
Алгебраические дополнения
; ∆1,1 = (0·0-1·1) = -1
; ∆1,2 = -(3·0-2·1) = 2
; ∆1,3 = (3·1-2·0) = 3
; ∆2,1 = -(3·0-1·2) = 2
; ∆2,2 = (0·0-2·2) = -4
; ∆2,3 = -(0·1-2·3) = 6
; ∆3,1 = (3·1-0·2) = 3
; ∆3,2 = -(0·1-3·2) = 6
; ∆3,3 = (0·0-3·3) = -9
Обратная матрица:
Вектор результатов X: X = A -1 ·B


x1 = 9 / 12 = 0.75
x2 = 18 / 12 = 1.5
λ = -27 / 12 = -2.25
Таким образом, локальный экстремум (0.75; 1.5). Значение функции в стационарной точке F(0.75; 1.5) = 3.375.

Пример №5 . Найдем точку экстремума функции:
F(X) = 2x1 2 +x1x2+x2 2 +2x1-4x2
Перепишем ограничение задачи в неявном виде:
φ1 = x1+x2-2 = 0
Составим вспомогательную функцию Лагранжа:
L = 2x1 2 +x1x2+x2 2 +2x1-4x2 + λ(x1+x2-2)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 4x1+λ+x2+2 = 0
∂L/∂x2 = x1+λ+2x2-4 = 0
∂F/∂λ = x1+x2-2 = 0
Решаем данную систему с помощью формул Крамера.
Запишем систему в виде:

B T = (-2,4,2)
Главный определитель:
∆ = 4 · (2 · 0-1 · 1)-1 · (1 · 0-1 · 1)+1 · (1 · 1-2 · 1) = -4 = -4
Заменим 1-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.
1 = -2 · (2 · 0-1 · 1)-4 · (1 · 0-1 · 1)+2 · (1 · 1-2 · 1) = 4

Заменим 2-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.
2 = 4 · (4 · 0-2 · 1)-1 · (-2 · 0-2 · 1)+1 · (-2 · 1-4 · 1) = -12

Заменим 3-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.
3 = 4 · (2 · 2-1 · 4)-1 · (1 · 2-1 · (-2))+1 · (1 · 4-2 · (-2)) = 4

Стационарная точка: F(-1; 3).

Пример №6 . Найдем экстремум функции F(X) = x1·x2, используя функцию Лагранжа: L( X , λ )=F( X )+∑λi·φi( X ).
Примечание: решение ведем с помощью сервиса Функция Лагранжа онлайн

Примеры решений дифференциальных уравнений второго порядка методом Лагранжа

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Шаг 1. Решение однородного уравнения

Вначале мы решаем однородное дифференциальное уравнение:
(2)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение второго порядка.

Решаем квадратное уравнение:
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Шаг 2. Вариация постоянных – замена постоянных функциями

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;

.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные:
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

Общее решение исходного уравнения:

;
.

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных – замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Первый интеграл немного сложней (см. Интегрирование тригонометрических рациональных функций). Делаем подстановку :

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:

.

Автор: Олег Одинцов . Опубликовано: 05-08-2013 Изменено: 19-06-2017

Условный экстремум. Метод множителей Лагранжа. Первая часть.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_^<''>dx^2+2F_^<''>dxdy+F_^<''>dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F 0$, то $d^2F 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показать\скрыть

Некоторые авторы записывают определитель $H$ в иной форме (с знаком «-«):

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H m$):

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F 0.$$

Следовательно, в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_<\max>=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем:

$$H=8\cdot\left| \begin 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end \right|= 8\cdot\left| \begin 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end \right|=-40$$

Так как $H 0$. Следовательно, знак $H$ противоположен знаку $\lambda$. Можно и довести вычисления до конца:

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left( dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac<1><2>$ получим $d^2F 0$, посему в данной точке функция имеет условный максимум, $z_<\max>=\frac<500><243>$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

Так как $ d^2F \Bigr|_=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F \Bigr|_=-10 dx^2 0$, то $M_1$ – точка минимума функции $u(x)$, при этом $u_<\min>=u(0)=0$. Так как $u_^<''>(M_2) 0; \; y > 0. \end \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac<5x>$ и подставим найденное значение в первое уравнение: $5y-\frac<5x>\cdot \frac<4>=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac<4y^2><8>+\frac<2>-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

Ответ: в точке $(2;1)$ функция имеет условный максимум, $z_<\max>=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).


источники:

http://1cov-edu.ru/differentsialnye-uravneniya/lineinie_postoyannie_koeffitsienti/neodnorodnie_lagranzha/primer1/

http://math1.ru/education/funct_sev_var/lagranj.html