Примеры решений уравнений на maple

Примеры решений уравнений на maple

Решение обыкновенных уравнений.

Для решения уравнений в Maple существует универсальная команда solve(eq,x) , где eq – уравнение, x – переменная, относительно которой уравнение надо разрешить. В результате выполнения этой команды в строке вывода появится выражение, которое является решением данного уравнения. Например:

Если уравнение имеет несколько решений, которые вам понадобятся для дальнейших расчетов, то команде solve следует присвоить какое-нибудь имя name . Обращение к какому-либо k –ому решению данного уравнения производится указанием его имени с номером решения k в квадратных скобках: name[k] . Например:

Решение систем уравнений.

Системы уравнений решаются с помощью такой же команды solve(,) , только теперь в параметрах команды следует указывать в первых фигурных скобках через запятую уравнения, а во вторых фигурных скобках перечисляются через запятую переменные, относительно которых требуется решить систему. Если вам будет необходимо для дальнейших вычислений использовать полученные решения уравнений, то команде solve следует присвоить какое-нибудь имя name . Затем выполняется присвоения команда assign(name) . После этого над решениями можно будет производить математические операции. Например:

Численное решение уравнений.

Для численного решения уравнений, в тех случаях, когда трансцендентные уравнения не имеют аналитических решений, используется специальная команда fsolve(eq,x) , параметры которой такие же, как и команды solve . Например:

Решение рекуррентных и функциональных уравнений.

Команда rsolve(eq,f) позволяет решить рекуррентное уравнение eq для целой функции f . Можно задать некоторое начальное условие для функции f(n) , тогда получиться частное решение данного рекуррентного уравнения. Например:

Универсальная команда solve позволяет решать функциональные уравнения, например:

F := proc ( x ) RootOf(_ Z ^2 — 3*_ Z + 2* x ) end

В результате получается решение в неявном виде. Однако Maple может работать с такими решениями. Неявное решение функционального уравнения можно попытаться преобразовать в какую-либо элементарную функцию с помощью команды convert . Продолжая приведенный выше пример, можно получить решение в явном виде:

Решение тригонометрических уравнений.

Команда solve , примененная для решения тригонометрического уравнения, выдает только главные решения, то есть решения в интервале [0,2 p ]. Для того, чтобы получить все решения, следует предварительно ввести дополнительную команду _EnvAllSolutions:=true. Например:

В Maple символ _ Z

обозначает константу целого типа, поэтому решение данного уравнения в привычной форме имеет вид , где n – целые числа.

Решение трансцендентных уравнений.

При решении трансцендентных уравнений для получения решения в явном виде перед командой solve следует ввести дополнительную команду _EnvExplicit:=true . Пример решения сложной системы трансцендентных уравнений и упрощения вида решений:

Решение уравнений

Методы нахождения корней полиномов, решения уравнений, содержащих элементарные и специальные функции и систем сложных уравнений

Уравнения с одной переменной

Для решения таких уравнений в Maple предусмотрены две команды: solve для символьного решения и fsolve для решения с ответом в численном виде. Например, формула для квадратного уравнения:

Синтаксис solve выглядит так: solve(equation,variable) . Параметры записаны через запятую. Если задать численные коэффициенты, то система попытается дать численные ответы:

Maple знает формулы для кубического уравнения:

но они сложны, неприятны по внешнему виду, и их почти никогда не применяют.

Используем численные коэффициенты, чтобы ответ был численным:

Этот результат – правильный, но поскольку Maple «думает» символами, то они не выглядят слишком пригодными. Для получения чисел с плавающей запятой следует применять уже известную команду evalf :

или вводить коэффициенты уравнения с десятичной точкой:

Команда solve с полиномами работает по-умному: она знает фундаментальную теорему алгебры о том, что полином n-го порядка имеет n корней. Например, если спросить о корнях уравнения x 6 + 1:

в ответе должны быть все шесть.

RootOf часто встречается при решении уравнений в Maple. В этой задаче задается полином с целыми коэффициентами, что для Maple означает попытку решить уравнение в радикалах (квадратных, кубических корнях и т. п.). Это создает проблему, и в результате он не может дать в решение ничего иного, кроме корня –1. Но если нужны только числа, либо используйте evalf , либо изменяйте коэффициенты на числа с плавающей точкой, и вы получите все шесть корней:

Maple может решать более сложные уравнения вроде cos(x) – x/10:

Снова RootOf , поэтому такой же подход к решению: чтобы получить хотя бы один корень, замените 10 на 10. или используйте evalf(s7)

При решении сложных уравнений надо проявлять осторожность, поскольку возможно более одного ответа, и Maple не даст все. Попробуем нарисовать функцию cos(x) – x/10 и увидим, как много у нее нулей, т. е. столько корней придется искать.

Maple на самом деле не обманывает: 1.427551779 есть решение, но не все.

Важно: прежде чем искать решение, постройте график, тогда будете знать, сколько корней надо найти.

Как заставить Maple выдать все корни? Поскольку они ищутся численно, применяется команда fsolve , которой надо задать уравнение, переменную и диапазон значений для поиска корней. Например, на рисунке видно, что корни находятся вблизи –9.6, –9.2, –4, –2, 1.5, 5 и 7. Это надо указать в fsolve , задавая диапазон поиска решений (x1..x2):

Посмотрите, что произойдет, если указать диапазон, где нет корней:

По общему правилу, когда Maple без вычислений возвращает то, что ему задали, это означает, что либо он не может найти ответ, либо вы ошиблись. Ищите, где ошибка.

Учтите, что вместо диапазона можно просто задать одно угаданное решение:

Здесь надо быть осторожным. Если для fsolve подсказано начальное значение, причем оно расположено близко к максимуму функции, нули которой ищутся, то fsolve может ошибиться или может найти решение не в том месте, где начальная подсказка. Посмотрим на примере метода секущих, почему так происходит:

Еще один способ контроля за решениями – опция avoid в fsolve .

Ищем решения уравнения cos(x) + x/3. Чтобы узнать, где искать корни, нарисуем функцию и увидим рядом с 3 два близко расположенных корня. Команда найдет один из них:

а вам нужен второй, и возникает проблема: как указать команде на него или как задать начальное значение. Можно так: ищи один корень вблизи 3, но не ищи s1:

Найдите все действительные или комплексные корни следующих полиномов. Используйте для этого команды solve и fsolve .

(a) x 4 – 1,(b) x 3 + x 2 + x + 1.

solve дает комплексные величины, а fsolve – нет. Это можно исправить, указав fsolve , что нужно искать комплексные решения: fsolve(x^2+1=0, x,complex) .

Посмотрите, что случается при использовании команды factor(f,complex) , где f – полином, который надо разложить.

(a) Найдите все решения уравнения e x = 10sin(x) между –5 и 20.

(b) Найдите все решения уравнения e (–x) = x, используйте solve и fsolve и сравните ответы.

(с) Найдите все корни функции для x между 0 и 10.

(d) Найдите все корни производной функции Бесселя между 0 и 100 и занесите их в вектор-столбец a n .

Эту задачу можно решить очень компактно с помощью команды seq с командой fsolve внутри нее.

Решение разбейте на части:

Шаг 1. Нарисуйте функцию между 0 и 100, затем несколько раз обновите диапазон графика, чтобы узнать, где первый и второй корни и как далеко они друг от друга (вы обнаружите, что они на расстоянии порядка π).

Шаг 2. Чтобы применить полученную информацию, используйте команду seq , чтобы генерировать все корни.

Команда seq , вроде такой: seq(n^2,n=0..20) , генерирует список чисел; затем учтите, что первый аргумент seq , который генерирует зависящее от n число, может быть чем угодно, даже результатом fsolve .

Вот пример построения последовательности нулей косинуса с помощью seq и fsolve , который основан на догадке, что начинать надо с 1.4 и расстояние между нулями π: seq(fsolve(cos(x)=0,x=1.4+n*Pi),n=0..20);

Шаг 3. Все, что вам теперь нужно сделать, – загрузить эти числа в вектор-столбец. Если команда seq не дала первый корень при x=0 , догадайтесь, как это сделать вручную.

Примеры решений уравнений на maple

уМЕДХАЭБС: task2, рТЕДЩДХЭБС: Top, чЧЕТИ: Top

1 уЙУФЕНЩ ЛПНРШАФЕТОПК БМЗЕВТЩ

Maple – УРЕГЙБМЙЪЙТПЧБООЩК НБФЕНБФЙЮЕУЛЙК РБЛЕФ, ЛПФПТЩН РПМШЪХАФУС РТПЖЕУУЙПОБМШОЩЕ НБФЕНБФЙЛЙ ЧП ЧУЕН НЙТЕ. рПДПВОЩЕ РБЛЕФЩ ФБЛЦЕ ОБЪЩЧБАФУС УЙУФЕНБНЙ ЛПНРШАФЕТОПК БМЗЕВТЩ. йЪ НОПЦЕУФЧБ РПДПВОЩИ УЙУФЕН (Maple, Matlab, Mathcad, Mathematica, Macsyma, Derive, Axiom, MuPAD) Maple СЧМСЕФУС РТЙЪОБООЩН МЙДЕТПН Ч ПВМБУФЙ УЙНЧПМШОЩИ ЧЩЮЙУМЕОЙК (ФП ЕУФШ Ч РТЕПВТБЪПЧБОЙЙ ЧЩТБЦЕОЙК У ЙУРПМШЪПЧБОЙЕН РЕТЕНЕООЩИ, НОПЗПЮМЕОПЧ, ЖХОЛГЙК Й Ф.Д.). рПНЙНП ЬФПЗП Ч Maple ЧИПДСФ НПДХМЙ, ПВМЕЗЮБАЭЙЕ ТБВПФХ Ч ФБЛЙИ ТБЪДЕМБИ НБФЕНБФЙЛЙ, ЛБЛ ЧЩУЫБС БМЗЕВТБ, МЙОЕКОБС БМЗЕВТБ, БОБМЙФЙЮЕУЛБС ЗЕПНЕФТЙС, ФЕПТЙС ЮЙУЕМ, НБФЕНБФЙЮЕУЛЙК БОБМЙЪ, ДЙЖЖЕТЕОГЙБМШОЩЕ ХТБЧОЕОЙС, ЛПНВЙОБФПТОЩК БОБМЙЪ, ФЕПТЙС ЧЕТПСФОПУФЕК, УФБФЙУФЙЛБ Й НОПЗЙИ ДТХЗЙИ.

дМС РПМХЮЕОЙС УРТБЧЛЙ РП ФПК ЙМЙ ЙОПК ЛПНБОДЕ ОЕПВИПДЙНП Ч ПЛОЕ Maple ЧЧЕУФЙ ?command (ЪБНЕОЙЧ command ОБ ЙНС ЛПНБОДЩ).

Maple ЛБЛ УХРЕТЛБМШЛХМСФПТ

ч ТБВПЮЕН МЙУФЕ (worksheet) УЙУФЕНЩ Maple НПЦОП ЧЧПДЙФШ ЛПНБОДЩ РПУМЕ РТЙЗМБЫЕОЙС » > «. лПНБОДБ ДПМЦОБ ЪБЧЕТЫБФШУС УЙНЧПМПН » ; «, ЕЕ ТЕЪХМШФБФ ОЕНЕДМЕООП ЧЩЧПДЙФУС ОБ ЬЛТБО. еУМЙ ЧНЕУФП » ; » РПУФБЧЙФШ » : «, ФП ЛПНБОДБ ВХДЕФ ЧЩРПМОЕОБ, ОП ТЕЪХМШФБФ ЕЕ ТБВПФЩ ОЕ ВХДЕФ ОБРЕЮБФБО. оБРТЙНЕТ:

лБЛ НЩ ЧЙДЙН, Maple ЧЩДБЕФ ПФЧЕФ Ч ФПЮОПН ЧЙДЕ Ч ЧЙДЕ ТБГЙПОБМШОПЗП ЧЩТБЦЕОЙС. еУМЙ ИПЮЕФУС РТЕДУФБЧЙФШ ЕЗП Ч ЧЙДЕ ДЕУСФЙЮОПК ДТПВЙ (У ОЕЛПФПТПК ФПЮОПУФША) ЧПУРПМШЪХКФЕУШ ЖХОЛГЙЕК evalf . еЕ РЕТЧЩК ПВСЪБФЕМШОЩК РБТБНЕФТ – ЧЩЮЙУМСЕНПЕ ЧЩТБЦЕОЙЕ, ЧФПТПК (ОЕПВСЪБФЕМШОЩК) – ЛПМЙЮЕУФЧП ЪОБЮБЭЙИ ДЕУСФЙЮОЩИ ЪОБЛПЧ (ХЮФЙФЕ, ЮФП РТЙ ЬФПН ЧЩТБЦЕОЙЕ ПЛТХЗМСЕФУС ДМС ЧЩЧПДБ УППФЧЕФУФЧХАЭЕЗП ЛПМЙЮЕУФЧБ ЪОБЛПЧ):

уЙНЧПМ % ПВПЪОБЮБЕФУС РПУМЕДОЕЕ ЧЩЮЙУМЕООПЕ Maple ЧЩТБЦЕОЙЕ, %% – РТЕДРПУМЕДОЕЕ, %%% — РТЕДРТЕДРПУМЕДОЕЕ (Б ЧПФ ПВПЪОБЮЕОЙС %%%% ХЦЕ ОЕ УХЭЕУФЧХЕФ).

юЙУМБ Й ЛПОУФБОФЩ

еУМЙ Ч ЧЩТБЦЕОЙЙ ЧУФТЕЮБЕФУС ЮЙУМП, ЪБРЙУБООПЕ У РМБЧБАЭЕК ФПЮЛПК (ОБРТЙНЕТ, 3.14 ЙМЙ 5.6e-17 ), ФП ЧУЕ ЧЩЮЙУМЕОЙС ЧЩРПМОСАФУС РТЙВМЙЦЕООП, Ч РТПФЙЧОПН УМХЮБЕ ЧЩЮЙУМЕОЙС РТПЧПДСФУС ФПЮОП. ч Maple ЕУФШ УМЕДХАЭЙЕ ЛПОУФБОФЩ: Pi юЙУМП РЙ
I нОЙНБС ЕДЙОЙГБ i
exp(1) пУОПЧБОЙЕ ОБФХТБМШОЩИ МПЗБТЙЖНПЧ e
infinity вЕУЛПОЕЮОПУФШ
true мПЗЙЮЕУЛБС ЙУФЙОБ
false мПЗЙЮЕУЛБС МПЦШ

чЩЮЙУМЕОЙС У ХЮБУФЙЕН ЛПОУФБОФ ЧЩРПМОСАФУС ФПЮОП (ЕУМЙ ФПМШЛП ЙИ ЪОБЮЕОЙЕ ОЕ ВХДЕФ РЕТЕЧЕДЕОП Л ДЕКУФЧЙФЕМШОПНХ ЪОБЮЕОЙА), ОБРТЙНЕТ

пРЕТБФПТЩ

ч Maple УХЭЕУФЧХАФ УМЕДХАЭЙЕ ПРЕТБФПТЩ:

бТЙЖНЕФЙЮЕУЛЙЕ: + , — , * , / , ^ (ЧПЪЧЕДЕОЙЕ Ч УФЕРЕОШ), ! (ЖБЛФПТЙБМ).

мПЗЙЮЕУЛЙЕ: , > , >= , , = (ТБЧОП), <> (ОЕ ТБЧОП).

рЕТЕНЕООЩЕ

рЕТЕНЕООПК СЧМСЕФУС МАВПК ЙДЕОФЙЖЙЛБФПТ (УПУФПСЭЙК ЙЪ МБФЙОУЛЙИ ВХЛЧ Й ГЙЖТ, ОБЮЙОБАЭЙКУС У ГЙЖТЩ). рЕТЕНЕООПК НПЦЕФ ВЩФШ РТЙУЧПЕОП МАВПЕ ЪОБЮЕОЙЕ РТЙ РПНПЭЙ ПРЕТБФПТБ РТЙУЧБЙЧБОЙС := . рЕТЕНЕООБС, ЛПФПТПК ОЕ РТЙУЧПЕОП ОЙЛБЛПЕ ЪОБЮЕОЙЕ УЮЙФБЕФУС УЧПВПДОПК РЕТЕНЕООПК Й ЕЕ ЙНС УПИТБОСЕФУС Ч БТЙЖНЕФЙЮЕУЛЙИ ЧЩЮЙУМЕОЙСИ. оБРТЙНЕТ:

уФБОДБТФОЩЕ ЖХОЛГЙЙ

ъОБЛ x (ЧПЪЧТБЭБЕФ 1, -1 ЙМЙ 0) – sign(x)

фТЙЗПОПНЕФТЙЮЕУЛЙЕ ЖХОЛГЙЙ: sin(x) , cos(x) , tan(x) , cot(x)

пВТБФОЩЕ ФТЙЗПОПНЕФТЙЮЕУЛЙЕ: arcsin(x) , arccos(x) , arctan(x) , arccot(x)

оБФХТБМШОЩК, ДЕУСФЙЮОЩК МПЗБТЙЖН Й МПЗБТЙЖН РП ДБООПНХ ПУОПЧБОЙА: ln(x) , log10(x) , log[a](x)

рТЕПВТБЪПЧБОЙЕ НБФЕНБФЙЮЕУЛЙИ ЧЩТБЦЕОЙК

ч ЧЩТБЦЕОЙЕ НПЗХФ ЧИПДЙФШ ЛПОУФБОФЩ, УЧПВПДОЩЕ РЕТЕНЕООЩЕ, НБФЕНБФЙЮЕУЛЙЕ ЖХОЛГЙЙ. рТЙНЕТ ЧЩТБЦЕОЙС:

дПЧПМШОП ЮБУФП Ч ЛБЮЕУФЧЕ ЧЩТБЦЕОЙК ЧЩУФХРБАФ НОПЗПЮМЕОЩ ПФ ПДОПК ЙМЙ ОЕУЛПМШЛЙИ РЕТЕНЕООЩИ ЙМЙ ТБГЙПОБМШОЩЕ ЧЩТБЦЕОЙС. Maple УПДЕТЦЙФ ТБЪМЙЮОЩЕ ЖХОЛГЙЙ ДМС РТЕПВТБЪПЧБОЙС ФБЛЙИ ЧЩТБЦЕОЙК.

жХОЛГЙС factor(eq) ТБЪМБЗБЕФ ЧЩТБЦЕОЙЕ eq ОБ НОПЦЙФЕМЙ.

жХОЛГЙС expand(eq) ТБУЛТЩЧБЕФ УЛПВЛЙ Ч ЧЩТБЦЕОЙЙ. еУМЙ ХЛБЪБФШ ПДЙО ЙМЙ ОЕУЛПМШЛП ДПРПМОЙФЕМШОЩИ РБТБНЕФТПЧ Ч ЧЙДЕ expand(eq,a,b,c) , ФП ЧЩТБЦЕОЙС a , b , c ТБУЛТЩЧБФШУС ОЕ ВХДХФ. ьФП РПМЕЪОП, ЕУМЙ ОЕПВИПДЙНП ЛБЦДПЕ УМБЗБЕНПЕ ХНОПЦЙФШ ОБ ЛБЛПЕ-ФП ЧЩТБЦЕОЙЕ.

дМС РТЙЧЕДЕОЙС ДТПВЕК Л ПВЭЕНХ ЪОБНЕОБФЕМА У РПУМЕДХАЭЙН УПЛТБЭЕОЙЕН ЙУРПМШЪХЕФУС ЖХОЛГЙС normal(eq) .

жХОЛГЙС simplify(eq) ХРТПЭБЕФ ЧЩТБЦЕОЙЕ eq . ч ЛБЮЕУФЧЕ ЧФПТПЗП (ОЕПВСЪБФЕМШОПЗП) РБТБНЕФТБ, ЕК НПЦОП ХЛБЪБФШ, ЛБЛЙЕ ЧЩТБЦЕОЙС РТЕПВТБЪПЧЩЧБФШ: trig – ФТЙЗПОПНЕФТЙЮЕУЛЙЕ, power – УФЕРЕООЩЕ, radical – ТБДЙЛБМЩ, exp – ЬЛУРПОЕОФЩ, ln – МПЗБТЙЖНЩ.

тЕЫЕОЙЕ ХТБЧОЕОЙК

пВЩЛОПЧЕООЩЕ ХТБЧОЕОЙС

дМС ТЕЫЕОЙС ХТБЧОЕОЙК ЙУРПМШЪХЕФУС ЖХОЛГЙС solve(eq,x) , ЗДЕ eq – ТЕЫБЕНПЕ ХТБЧОЕОЙЕ, x – ЙНС РЕТЕНЕООПК, ПФОПУЙФЕМШОП ЛПФПТПК ТБЪТЕЫБЕФУС ХТБЧОЕОЙЕ. рТЙНЕТ:

еУМЙ ХТБЧОЕОЙЕ ЙНЕЕФ ОЕУЛПМШЛП ТЕЫЕОЙК, ФП ТЕЫЕОЙЕ ХТБЧОЕОЙС НПЦОП РТЙУЧПЙФШ ОЕЛПФПТПК РЕТЕНЕООПК, ОБРТЙНЕТ p . дБМЕЕ НПЦОП ЙУРПМШЪПЧБФШ k -Е ТЕЫЕОЙЕ ХТБЧОЕОЙС Ч ЧЙДЕ p[k] :

уЙУФЕНЩ ХТБЧОЕОЙК

уЙУФЕНЩ ХТБЧОЕОЙК ТЕЫБАФУС У РПНПЭША ФБЛПК ЦЕ ЖХОЛГЙЙ solve(,) , ФПМШЛП ФЕРЕТШ Ч РБТБНЕФТБИ ЖХОЛГЙЙ УМЕДХЕФ ХЛБЪЩЧБФШ Ч РЕТЧЩИ ЖЙЗХТОЩИ УЛПВЛБИ ЮЕТЕЪ ЪБРСФХА ХТБЧОЕОЙС, Б ЧП ЧФПТЩИ ЖЙЗХТОЩИ УЛПВЛБИ РЕТЕЮЙУМСАФУС ЮЕТЕЪ ЪБРСФХА РЕТЕНЕООЩЕ, ПФОПУЙФЕМШОП ЛПФПТЩИ ФТЕВХЕФУС ТЕЫЙФШ УЙУФЕНХ. еУМЙ ОЕПВИПДЙНП ЙУРПМШЪПЧБФШ РПМХЮЕООЩЕ ТЕЫЕОЙС ХТБЧОЕОЙК ДМС ДБМШОЕКЫЙИ ЧЩЮЙУМЕОЙК, ФП ОЕПВИПДЙНП ТЕЪХМШФБФ, ЧПЪЧТБЭБЕНЩК ЖХОЛГЙЕК solve РТЙУЧПЙФШ ЛБЛПК-ОЙВХДШ РЕТЕНЕООПК, ОБРТЙНЕТ, p , Б ЪБФЕН ЧЩРПМОЙФШ ЛПНБОДХ assign(p) . рТЙНЕТ:

юЙУМЕООПЕ ТЕЫЕОЙЕ ХТБЧОЕОЙК

рПРТПВХЕН ТЕЫЙФШ ХТБЧОЕОЙЕ: x 6 -2x+1=0. йУРПМШЪПЧБОЙЕ ЖХОЛГЙЙ solve ДБУФ ОБН ПДЙО ЛПТЕОШ -1 Й ЕЭЕ ОБВПТ ЧЩТБЦЕОЙК ЧЙДБ RootOf(_Z^5+_Z^4+_Z^3+_Z^2+_Z-1,index = 1) . дЕМП Ч ФПН, ЮФП РТПЙЪЧПМШОПЕ ХТБЧОЕОЙЕ УФЕРЕОЙ ЧЩЫЕ 4 У ТБГЙПОБМШОЩНЙ ЛПЬЖЖЙГЙЕОФБНЙ НПЦЕФ ОЕ ЙНЕФШ ЛПТОЕК, ЧЩТБЪЙНЩИ Ч ЧЙДЕ ТБДЙЛБМПЧ ОБД ТБГЙПОБМШОЩНЙ ЮЙУМБНЙ. тЕЫЕОЙС ЧУЕЧПЪНПЦОЩИ ФБЛЙИ ХТБЧОЕОЙК ОБЪЩЧБАФУС БМЗЕВТБЙЮЕУЛЙНЙ ЮЙУМБНЙ. дБООПЕ ХТБЧОЕОЙЕ ФБЛЦЕ ОЕТБЪТЕЫЙНП Ч ТБДЙЛБМБИ, Й Maple ОБЫМБ ОБН ЕДЙОУФЧЕООЩК ЛПТЕОШ, ЧЩТБЪЙНЩК Ч ТБДЙЛБМБИ (1) Й УППВЭЙМБ, ЮФП ПУФБЧЫЙЕУС ЛПТОЙ СЧМСАФУС БМЗЕВТБЙЮЕУЛЙНЙ ЮЙУМБНЙ: ЛПТОСНЙ НОПЗПЮМЕОБ z 5 +z 4 +z 3 +z 2 +z-1=0 (ЙНЕООП ЬФПФ НОПЗПЮМЕО ХЛБЪБО Ч БТЗХНЕОФЕ ЖХОЛГЙЙ RootOf ). Maple ХНЕЕФ ТБВПФБФШ У БМЗЕВТБЙЮЕУЛЙНЙ ЮЙУМБНЙ, ОП НПЦОП ФБЛЦЕ ОБКФЙ РТЙВМЙЦЕООПЕ ЮЙУМЕООПЕ ТЕЫЕОЙЕ РТЙ РПНПЭЙ ЖХОЛГЙЙ fsolve :

йОПЗДБ Maple РТЙ ТЕЫЕОЙЙ ФТБОУГЕОДЕОФОЩИ ХТБЧОЕОЙК ОЕ ЧЩЧПДЙФ УМПЦОЩЕ ЧЩТБЦЕОЙС Ч ЧЙДЕ ТБДЙЛБМПЧ, Б ПУФБЧМСЕФ ЙИ Ч ЖПТНЕ RootOf. юФПВЩ ЪБУФБЧЙФШ Maple ЧЩЧПДЙФШ ЧУЕ ТЕЫЕОЙС Ч ЧЙДЕ ТБДЙЛБМПЧ (ЕУФЕУФЧЕООП, ЕУМЙ ПОЙ РТЕДУФБЧЙНЩ Ч ФБЛПК ЖПТНЕ), ОЕПВИПДЙНП РТЙУЧПЙФШ ЪОБЮЕОЙЕ true УЙУФЕНОПК РЕТЕНЕООПК _EnvExplicit ( _EnvExplicit:=true ).

тЕЫЕОЙЕ ФТЙЗПОПНЕФТЙЮЕУЛЙИ ХТБЧОЕОЙК

лПНБОДБ solve , РТЙНЕОСЕНБС ДМС ТЕЫЕОЙС ФТЙЗПОПНЕФТЙЮЕУЛЙИ ХТБЧОЕОЙК, ОБИПДЙФ ФПМШЛП ЗМБЧОЩЕ ТЕЫЕОЙС, ФП ЕУФШ ЧЩЧПДЙФ ФПМШЛП ПДОП ТЕЫЕОЙЕ ЙЪ УЕТЙЙ РЕТЙПДЙЮЕУЛЙИ ТЕЫЕОЙК:

дМС ФПЗП, ЮФПВЩ Maple ОБИПДЙМБ ЧУЕ ТЕЫЕОЙС, ОЕПВИПДЙНП РТЕДЧБТЙФЕМШОП РТЙУЧПЙФШ ЪОБЮЕОЙЕ true УЙУФЕНОПК РЕТЕНЕООПК _EnvAllSolutions . фПЗДБ НЩ РПМХЮЙН ТЕЪХМШФБФ Ч ДТХЗПН ЧЙДЕ, Ч ЛПФПТПН ВХДХФ ЖЙЗХТЙТПЧБФШ РЕТЕНЕООЩЕ Z1

. ьФЙ РЕТЕНЕООЩЕ ПВПЪОБЮБАФ РТПЙЪЧПМШОХА ЛПОУФБОФХ ГЕМПЗП ФЙРБ, Ч ВПМЕЕ РТЙЧЩЮОПН ЧЙДЕ ТЕЫЕОЙС НПЦОП ВХДЕФ ЪБРЙУБФШ, ЛБЛ π/4+πn , πk .


источники:

http://mmlab2.uginfo.sfedu.ru/chapters/ch6/chapter6_1.html

http://server.179.ru/tasks/maple/task1.html