Примеры уравнений с кислотами как электролитами

Кислоты как электролиты, их классификация по различным признакам.

Кислотами называют сложные вещества, молекулы которого состоят из атомов водорода и кислотного остатка.

Вспомним, что мы уже знаем о кислотах и их классификации.

Мы выяснили, что классификаций кислот несколько, как и признаков классификации. Но какими бы разными они не были, все кислоты при диссоциации образуют катионы водорода, которые и обуславливают ряд общих свойств: кислый вкус, изменение окраски индикаторов (демонстрационный эксперимент кислота + индикаторы), взаимодействие с другими веществами. На прошлых уроках мы познакомились с вами с ТЭД, поэтому давайте запишем определение кислот с позиции этой теории.

Кислотами называют электролиты, которые при диссоциации образуют катионы водорода и анионы кислотного остатка.

Самостоятельная работа с учебником: Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов, страница 73. – рассмотреть классификацию кислот.

Химические свойства кислот в свете теории электролитической диссоциации.

Основные химические свойства рассматриваются в виде схемы представленной в учебнике:

1. Кислота + металл → соль + водород

Данные реакции идут при выполнении нескольких условий:

если металлы стоят в ряду активности металлов до водорода;

в результате реакции должна получаться растворимая соль, если образуется нерастворимая соль то на поверхности металла образуется плёнка из этой соли, которая прекращает доступ кислоты к металлу;

нерастворимая кремниевая кислота не взаимодействует с металлами;

особо взаимодействуют с металлами азотная и концентрированная серная кислоты, но об этом мы будем говорить в 9 классе.

Al 0 + 6H + + 3SO4 2- = 2Al 3+ + 3SO4 2- + H2

2. Кислота + основание → соль + вода (реакция нейтрализации)

Эта реакция универсальна и протекает между любой кислотой и между любым основанием.

НCl + NaOH = NaCl + Н2О

H + + Cl — + Na + + OH — = Na + + Cl — + Н2О

Реакцию между нерастворимым основанием и кислотой предлагается написать ребятам самостоятельно (молекулярное, полное и сокращённое ионное) первый составивший получает оценку:

3. Кислота + оксид металла → соль + вода

При составлении данного уравнения обратить внимание обучающихся на то, что оксиды металлов не являются электролитами, поэтому в ионном уравнении его записывают в молекулярном виде (мультимедийное учебное пособие “Химия.8 класс” №5, 6).

CuO + 2H + = Cu 2+ + 2H2O

Данный тип реакций идёт в случае образования растворимой соли, если образуется нерастворимая соль, то на поверхности металла образуется плёнка из этой соли, которая прекращает доступ кислоты к оксиду.

4. Кислота + соль → новая кислота + новая соль

Взаимодействие кислот с солями типичная реакция обмена и протекает по тем же закономерностям, т.е. в случае образования осадка, газа или слабого электролита.

Особенности взаимодействия концентрированной серной и азотной кислот с металлами.

Самостоятельная работа с учебником: Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов, страница 74.

Основные способы получения кислоты.

— бескислородные кислоты получают взаимодействием водорода с неметаллами (с последующим растворением в воде):

— — взаимодействие кислотных оксидов с водой:

N2O5 + H2O = 2HNO3;

P2O5 + 3H2O = 2H3PO4;

— — взаимодействие солей с кислотами (действием сильной или менее летучей кислоты на соль более слабой кислоты или более летучей кислоты):

H2SO4 + NaCl(ТВ) = HCl + NaHSO4;

Na2SiO3 + 2HCl = H2SiO3¯ + 2NaCl;

— — окисление простых веществ:

2P + 5HNO3 + 2H2O = 3H3PO4 + 5NO;

Br2 + 5Cl2 + 6H2O = 2HBrO3 + 10HCl.

Вопросы для самоконтроля

¾ Дайте определение классу кислот.

¾ Кислот достаточно много, а можно ли их классифицировать.

¾ Какие вы знаете классификации.

¾ На какие группы делятся кислоты по составу, по основности, по силе (приведите примеры).

¾ Перечислите основные физические свойства, присущие практические всем неорганическим кислотам.

¾ Какие вещества реагируют друг с другом? Выберите правильные ответы:

а) CuO + HCl = …;
б) Cu + HCl = …;
в) CuSO4 + HCl = …;
г) CuCO3 + HCl = …

¾ Напишите уравнения возможных реакций (молекулярные и сокращённые ионные.

¾ Какие вещества реагируют друг с другом? Выберите правильные ответы:

¾ Напишите уравнения возможных реакций (молекулярные и сокращённые ионные.

¾ Отвечать на вопросы учебника: Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов, страница 77.

ПЛАН ЗАНЯТИЯ № 14

Дисциплина: Химия.

Тема:Основания.

Цель занятия: закрепить знания обучающихся о свойствах, способах получения и классификации оснований.

Предметные: сформированность представлений о месте химии в современной научной картине мира; владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное пользование химической терминологией и символикой;

Метапредметные: использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

Личностные: готовность к продолжению образования и повышения квалификации в из­бранной профессиональной деятельности и объективное осознание роли хи­мических компетенций в этом;

Норма времени:2 часа

Вид занятия:Лекция.

План занятия:

1. Основания как электролиты, их классификация по различным признакам.

2. Химические свойства оснований в свете теории электролитической диссоциации. Разложение нерастворимых в воде оснований.

3. Основные способы получения оснований.

Оснащение:Учебник.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 — изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Тема 14. Основания.

1. Основания как электролиты, их классификация по различным признакам.

2. Химические свойства оснований в свете теории электролитической диссоциации. Разложение нерастворимых в воде оснований.

Растворы электролитов

Электролиты

При растворении в воде некоторые вещества имеют способность проводить электрический ток.

Те соединения, водные растворы которых способны проводить электрический ток называются электролитами.

Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания).

Вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) являются слабыми электролитами.

Многие органические соединения (углеводы, спирты), растворенные воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами.

Приведем некоторые закономерности, руководствуясь которыми можно определить относятся вещества к сильным или слабым электролитам:

  1. Кислоты. К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO3, H2SO4, HClO4. Все они являются сильными электролитами. Почти все остальные кислоты, в том числе и органические являются слабыми электролитами.
  2. Основания. Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be) относятся к сильным электролитам. Слабый электролит – NH3.
  3. Соли. Большинство распространенных солей – ионных соединений — сильные электролиты. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и принципу Вант-Гоффа.

Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Сущность теории электролитической диссоциации

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Степень диссоциации электролита зависит от:

  • природы самого электролита
  • природы растворителя
  • концентрации электролита
  • температуры.

Степень диссоциации

Степень диссоциации α, показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N:

  • Степень диссоциации равна 0 α = 0 означает, что диссоциация отсутствует.
  • При полной диссоциации электролита степень диссоциации равна 1 α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на:

  • сильные (α > 0,7),
  • средней силы ( 0,3 > α > 0,7),
  • слабые (α — + bB +

    K = [A — ] a ·[B + ] b /[Aa Bb]

    Для слабых электролитов концентрация каждого иона равна произведению степени диссоциации α на общую концентрацию электролита С.

    Таким образом, выражение для константы диссоциации можно преобразовать:

    K = α 2 C/(1-α)

    Для разбавленных растворов (1-α) =1, тогда

    K = α 2 C

    Отсюда нетрудно найти степень диссоциации

    α = (K/C) 1/2

    Ионно–молекулярные уравнения

    Как составить полное и сокращенное ионные уравнения

    Рассмотрим несколько примеров реакций, для которых составим молекулярное, полное и сокращенное ионное уравнения.

    1) Пример нейтрализации сильной кислоты сильным основанием

    1. Процесс представлен в виде молекулярного уравнения.

    HCl + NaOH = NaCl + HOH

    2. Представим процесс в виде полного ионного уравнения. Т.е. запишем в ионном виде все соединения — электролиты, которые в растворе полностью ионизированы.

    H + + Cl — +Na + + OH — = Na + + Cl — + HOH

    3. После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

    H + + OH — = HOH

    Мы видим, что процесс нейтрализации сводится к соединению H + и OH — и образованию воды.

    При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

    2) Пример реакции осаждения

    Смешаем водные растворы AgNO3 и HI:

    Молекулярное уравнениеAgNO3 + HI →AgI↓ + HNO3
    Полное ионное уравнениеAg + + NO3 — + H + + I — →AgI↓ + H + + NO3
    Сокращенное ионное уравнениеAg + + I — →AgI↓

    Процесс осаждения сводится к взаимодействию только Ag + и I — и образованию нерастворимого в воде AgI.

    Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей растворимости кислот, солей и оснований в воде. В приведенной таблице также указан цвет образуемого осадка, сила кислот и оснований и способность анионов к гидролизу.

    Пример образования летучего соединения

    Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

    Молекулярное уравнениеNa2SO3 + 2HI → 2NaI + SO2↑ + H2O
    Полное ионное уравнение2Na + + SO3 2- + 2H + + 2I — → 2Na + + 2I — + SO2↑ + H2O
    Сокращенное ионное уравнениеSO3 2- + 2H + → SO2↑ + H2O

    Отсутствие взаимодействия между растворами веществ

    При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

    Молекулярное уравнениеCaCl2 + 2NaI = 2NaCl +CaI2
    Полное ионное уравнениеCa 2+ + Cl — + 2Na + + I — = 2Na + + Cl — + Ca 2+ + 2I —
    Сокращенное ионное уравнениеотсутствует

    Условия протекания реакции (химического превращения)

    Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

    • Образование неэлектролита. В качестве неэлектролита может выступать вода.
    • Образование осадка.
    • Выделение газа.
    • Образование слабого электролита, например уксусной кислоты.
    • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
    • Образование или разрыв одной или нескольких ковалентных связей.

    Урок №8. Диссоциация кислот, оснований и солей

    Диссоциация кислот, оснований и солей в водных растворах

    С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.

    Диссоциация кислот

    Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода (H + )

    Многоосновные кислоты диссоциируют ступенчато:

    Н 3 РО 4 ↔ Н + + Н 2 РО — 4 (первая ступень) – дигидроортофосфат ион

    Н 2 РО — 4 ↔ Н + + НРO 2- 4 (вторая ступень) – гидроортофосфат ион

    НРО 2- 4 ↔ Н + + PО З- 4 (третья ступень) – ортофосфат ион

    Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени — по третьей.

    Диссоциация оснований

    Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы (OH — )

    Щёлочи – это основания, растворимые в воде (основания щелочных и щелочноземельных металлов) : LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2 , а также NН 4 ОН

    Примеры уравнений диссоциации щелочей:

    NH 4 OH ↔ NH + 4 + OH —

    Многокислотные основания диссоциируют ступенчато:

    Ba(ОН) 2 → Bа(ОН) + + OH — (первая ступень)

    Ba(OH) + ↔ Ba 2+ +OH — (вторая ступень)

    Диссоциация амфотерных оснований (амфолитов)

    Амфолиты — это электролиты, которые при диссоциации одновре­менно образуют катионы водорода (H + ) и гидроксид-ионы (OH )

    Диссоциацию амфотерного гидроксида цинка Zn(ОН) 2 можно выра­зить уравнением:

    2ОН — + Zn 2+ + 2Н 2 О ↔ Zn(ОН) 2 + 2Н 2 О ↔ [Zn(ОН) 4 ] 2- + 2Н +

    Диссоциация солей

    Солями называются электролиты, при диссоциации которых образуются катионы металлов, а также катион аммония (NH + 4 ) и анионы кислотных остатков.

    Диссоциация средних солей

    Na 3 PO 4 →3Na + + PO 3- 4

    Кислые и основные соли диссоци­ируют ступенчато.

    Диссоциация кислых солей

    У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода.

    KHSO 4 → K + + HSO — 4

    HSO — 4 ↔ H + + SO 2- 4

    Диссоциация основных солей

    У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.

    MgOHCl → MgOH + + Cl —

    MgOH + ↔ Mg 2+ + OH —

    ЗАДАНИЕ ДЛЯ ЗАКРЕПЛЕНИЯ

    Используя таблицу растворимости солей, кислот, оснований напишите уравнения диссоциации следующих веществ: HF, Mg(OH) 2 , CaCl 2 , Zn(NO 3 ) 2 , Ba(OH) 2 , K 2 SO 4 , H 2 SiO 3 , FeI 3 , NiCl 2 , H 3 PO 4 , Ca(OH) 2 , Na 2 CO 3 , Na 3 PO 4 , HNO 3 , KOH, Ba(OH) 2 , H 2 SO 3 , Ca(NO 3 ) 2 , Ca 3 (PO 4 ) 2 , H 2 S, NaOH, HBr


    источники:

    http://zadachi-po-khimii.ru/obshaya-himiya/rastvory-elektrolitov.html

    http://www.sites.google.com/site/himulacom/%D0%B7%D0%B2%D0%BE%D0%BD%D0%BE%D0%BA-%D0%BD%D0%B0-%D1%83%D1%80%D0%BE%D0%BA/9-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%B9-%D0%B3%D0%BE%D0%B4-%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F/%D1%83%D1%80%D0%BE%D0%BA-8-%D0%B4%D0%B8%D1%81%D1%81%D0%BE%D1%86%D0%B8%D0%B0%D1%86%D0%B8%D1%8F-%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82-%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B9-%D0%B8-%D1%81%D0%BE%D0%BB%D0%B5%D0%B9