Примеры уравнения приводимые к квадратным примеры

Показательные уравнения, сводящиеся к квадратным

Разберем показательные уравнения, сводящиеся к квадратным. Их могут ученики кратко называть «квадратные показательные уравнения», хотя это название не точное. Однако, многие показательные уравнения заменой переменной сводятся к квадратному уравнению вида: ax 2 +bx+c=0.

Показательные уравнения, приводимые к квадратным на примерах

Уравнение 1

Решить уравнение:

1) 4 x +2 x+1 -3=0. Представим 4 x в виде степени с основанием 2.

(2 2 ) x +2 x ∙2 1 -3=0; при возведении степени в степень основание оставляют, а показатели перемножают: 2·х=х·2, поэтому:

вводим новую переменную: пусть 2 x =y;

y 2 + 2 y -3 =0.

Дискриминант для четного второго коэффициента: D1=1 2 -1∙(-3)=1+3=4=2 2 – полный квадрат, поэтому применим теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Возвращаемся к переменной х:

1) 2 x =-3, нет решений, так как значения показательной функции: Е(у)=(0; +∞). (только положительные числа).

2) 2 x = 1. Число 1 можно представлять в виде нулевой степени по любому основанию.

2 x = 2 0 ;

Уравнение 2

2) 0,25 2x -5∙0,5 2x +4=0. Решаем аналогично. Представляем 0,25 2x — в виде степени с основанием 0,5.

(0,5 2 ) 2x -5∙0,5 2x +4=0;

(0,5 2x ) 2 -5∙0,5 2x +4=0.

0,5 2x =y; ввели новую переменную у и получили приведенное квадратное уравнение:

y 2 — 5 y+ 4 =0;

Дискриминант D=b 2 -4ac=5 2 -4∙1∙4=25-16=9=3 2 — полный квадрат, применяем теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

y1+y2= 5 , y1+y2= 4 . Корни приведенного квадратного уравнения находим подбором: y1=1, y2=4 и возвращаемся к переменной х:

1) 0,5 2x = 1 ; число 1 можно представлять в виде нулевой степени по любому основанию.

0,5 2x = 0,5 0 ;

2) 0,5 2 x =4; приведем степень 0,5 2 x к основанию 2, применив формулу: (1/a) x =а -х

2 -2 x =2 2 ; приравниваем показатели:

Уравнение 3

Представим левую и правую части в виде степеней с основанием 4, используя формулы: а -х =1/a x и a x ∙a y =a x + y .

Если равны две степени с одинаковыми основаниями, то основания можно опустить и приравнять показатели степеней. Переносим дробь из правой части равенства в левую и упрощаем левую часть.

Находим дискриминант приведенного квадратного уравнения. Дискриминант является квадратом целого числа, поэтому, подбираем корни, пользуясь теоремой Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Итак, решение показательных уравнений, которое мы разбирали в предыдущем уроке, пополнилось еще одним методом — приведением показательного уравнения к обычному квадратному уравнению. Такие уравнения называют — показательные уравнения, сводящиеся к квадратным.

Примеры уравнений, приводимых к квадратным. 9-й класс

Разделы: Математика

Класс: 9

Цели:

  • сформировать умение решать целые уравнения методом введения новой переменной;
  • развивать познавательную активность и творческие способности учащихся;
  • воспитывать навыки творческого усвоения знаний.

Оборудование: компьютер, проектор .

1. Сообщение темы и цели урока

2. Проверка домашнего задания

– Какие уравнения называют целыми?
– Что называют степенью уравнения?
№ 273 (2 ст.), № 274 (а) – решение представлено на экране.
– Проверьте домашнее задание и поставьте себе оценку в табеле.

Табель оценок

Виды работ на уроке

Оценка1Домашнее задание2Устная работа3Составление алгоритма решения уравнения4Работа у доски5Парная работа6Самостоятельная работа

3. Устная работа

а) (х + 6) (х – 7) = 0 (Когда произведение равно 0?)
б) (10 – х) (4 – х) = 0
в) х(25 + х) (2 + х) = 0
г) х 2 = 25
д) х 2 – 9 = 27

4. Работа по объяснению нового материала. (Создание проблемной ситуации)

– Какова степень уравнения x 4 – 4х 2 + 5 = 0? (4)
– Умеем мы решать такие уравнения? (Нет) Давайте попробуем.
– Можно переписать уравнение в таком виде: (х 2 ) 2 – 4х 2 + 5 = 0?
– На какое уравнение похожа эта запись? (На квадратное)
– Почему я выделила х 2 ?
– Что я могу сделать с этим одночленом? (Заменить другой переменной)
– Пусть х 2 = у, тогда у 2 – 4у + 5 = 0
– Что мы получили при замене переменной? (Квадратное уравнение)
– Когда решим квадратное уравнение, значение какой переменной мы найдём? (у)
– Это будет ответ? (Нет)
– Что мы должны сделать дальше? (Вернуться к подстановке)
– Сколько у нас получится уравнений? (2)
– Чтобы найти значение х, мы должны решить оба эти уравнения.
– Сколько корней имеет уравнение?
– Отчего зависит количество корней уравнения? (От количества и знака корней уравнения с замененной переменной)

5. Презентация решений уравнений:

х 4 – 4х 2 + 5 = 0 и
(х 2 + х + 6)(х 2 + х – 4) = 144

6. Закрепление нового материала

У доски решение с комментированием и составлением алгоритма решения.

№276(а): (2х 2 + 3) – 12(2х 2 + 3) + 11 = 0
№278(а): х 4 – 5х 2 – 36 = 0

Алгоритм решения биквадратного уравнения

Метод решения – замены переменной

1. Ввести замену переменной: пусть х 2 = y,
2. Составить квадратное уравнение с новой переменной: аy 2 + by+ с = 0 (2)
3. Решить новое квадратное уравнение (2).
4. Вернуться к замене переменной.
5. Решить получившиеся квадратные уравнения.
6. Сделать вывод о числе решений биквадратного уравнения.
7. Записать ответ.

7. Парная работа

Самостоятельное решение с взаимопроверкой. №276(б), 278(б)

8. Самостоятельная работа

в) г) д) е) одновременное решение у доски (на 4 досках). Проверка с помощью проектора.

7. Подведение итогов. Рефлексия

– Что нового узнали на уроке?
– Какие задания были сложными? Что запомнилось?
– Как работал класс на уроке?
– Кто работал лучше всех?

Поставить оценки за урок, используя табель оценок. (Табель сдается и проверяется учителем)

8. Домашнее задание: №279(обязательно), №280 (по выбору).

Квадратные уравнения

Квадратное уравнение или уравнение второй степени с одним неизвестным — это уравнение, которое после преобразований может быть приведено к следующему виду:

ax 2 + bx + c = 0 — квадратное уравнение,

где x — это неизвестное, а a, b и c — коэффициенты уравнения. В квадратных уравнениях a называется первым коэффициентом (a ≠ 0), b называется вторым коэффициентом, а c называется известным или свободным членом.

называется полным квадратным уравнением. Если один из коэффициентов b или c равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения.

Приведённое квадратное уравнение

Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на a, то есть на первый коэффициент:

x 2 +bx +c= 0.
aa

Затем можно избавиться от дробных коэффициентов, обозначив их буквами p и q:

еслиb= p, аc= q,
aa

то получится x 2 + px + q = 0.

Уравнение x 2 + px + q = 0 называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

является приведённым, а уравнение:

можно заменить приведённым уравнением, разделив все его члены на -3:

Решение квадратных уравнений

Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

Для каждого вида уравнения есть своя формула нахождения корней:

Вид уравненияФормула корней
ax 2 + bx + c = 0
ax 2 + 2kx + c = 0
x 2 + px + q = 0
или
если коэффициент p нечётный

Обратите внимание на уравнение:

это преобразованное уравнение ax 2 + bx + c = 0, в котором коэффициент b — четный, что позволяет его заменить на вид 2k. Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё 2k вместо b:

Пример 1. Решить уравнение:

Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала определим, чему равны коэффициенты:

Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

x1 =-2= —1, x2 =-12= -2
636

Ответ:1, -2.
3

Определим, чему равны коэффициенты:

Так как в уравнении второй коэффициент — чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

Приведём уравнение к общему виду:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:


источники:

http://urok.1sept.ru/articles/652480

http://izamorfix.ru/matematika/algebra/kvadratnye_uravn.html