Примеры задач на неравенства и уравнения

Решение задач на составление неравенств

Разделы: Математика

1. Неравенства первой степени с одним неизвестным

Задача 1. От деревни до железнодорожной станции 20 км. Поезд уходит со станции в 11 часов. В каком часу человеку, живущему в деревне, надо выйти из дома, чтобы успеть на поезд, если он будет идти со скоростью 5 км/ч?

Решение. Если пешеход выйдет из дома в х ч. Утра, то до 11 ч. он шёл бы (11 – х) ч. За это время он прошёл бы 5(11 – х) км. Чтобы он успел на поезд, надо, чтобы это расстояние было не меньше 20 км, т. е. должно выполняться неравенство 5(11 – х) > 20. Рассуждаем так. Найдём, в каком часу человек должен выйти, чтобы в точности успеть на поезд. Для этого должно выполняться равенство 5(11 – х) = 20. Решая это уравнение, получаем (11 – х) = 4 и потому х = 7. Значит, выйдя из дома в 7 часов утра, пешеход успеет на поезд. Тем более он успеет на него, выйдя из дома ещё раньше. А если он выйдет из дома позднее, то опоздает на поезд. Значит, чтобы успеть на поезд нужно выйти не позднее чем в 7 часов утра. На языке математики это значит, что решение неравенства 5(11 – х) > 20 имеет вид х (150 + 5х), т.е. решить неравенство с переменной х.
Это неравенство решается так (15х – 5х) > (150 – 100), Т.е. 10х > 50. Но если 10х > 50, то х > 5. Итак в первом бассейне окажется больше воды, чем во втором, при х > 5, т.е. после 5 ч. с начала вливания воды.

2. Системы неравенств с одним неизвестным

Решим следующую задачу.

Задача 3. Человек выехал в 6 ч. утра на автомашине из города А в город В, через город С. В городе С он должен взять по дороге пакет, привезённый на поезде, проходящем через город С в 10 ч, и отвезти его в город В, чтобы успеть на поезд, отходящий в 17 часов. С какой скоростью он должен ехать, если расстояние от А до С равно 400 КМ., а от С до В – 480 км?

Решение. Т.к. в город С автомобилист должен приехать не ранее 10 часов (до этого времени пакет ещё не привезён в С), а 10 – 6 = 4, то скорость х км/ч должна быть такой,
что 4х 880. Итак надо найти значение х, для которого выполняются оба неравенства 4х 880. Эту задачу записывают в виде системы неравенств:

Из первого неравенства находим, что х 80. Значит, должно выполнятся двойное неравенство 80 7, (1)
х 2 + у 2 2(10у + х). или 8х > 19у. (3)

Из (3) следует, что у может принимать значения 0, 1, 2, 3 (так как х 7. Эти числа не удовлетворяют неравенству (2). Если у = l, то из (1) следует, что х > 6. Эти числа не удовлетворяют неравенству (2). Если у = 2, то х > 5. Числа х = 5, у = 2 удовлетворяют всем неравенствам. При у = 2, х > 5 неравенство (2) не выполняется. Пусть у = 3. Из (3) следует х > 8, такие числа не удовлетворяют неравенству (2). Таким образом, больше решений нет.

Задача 8. В двух ящиках находится более 29 одинаковых деталей. Число деталей в первом ящике, уменьшенное на 2, более чем в три раза превышает число деталей во втором ящике. Утроенное число деталей в первом ящике превышает удвоенное число деталей во втором ящике менее чем на 60. Сколько деталей в каждом ящике?

Решение: Обозначим через х число деталей в первом ящике, а через у число деталей во втором ящике. Тогда согласно условию имеет место система неравенств:

Перепишем эту систему в виде

Отсюда следуют, справедливые неравенства:

Неравенство (2) можно переписать в виде , а неравенство (3) в виде

Т. к. и у – натуральное число, то у может быть равен либо 6, либо 7.

Если у равен 6, то система неравенств (1) перепишется в виде

Ясно, что нет натуральных чисел х, удовлетворяющих ей. Пусть у = 7, тогда система (1) примет вид:

Откуда следует, что существует единственное натуральное число х = 24, удовлетворяющее ей. Следовательно, в первом ящике 24 детали, а во втором ящике 7 деталей.
Ответ: в I ящике 24 детали, а во II – 7 деталей.

Задача 9. Пункты А и В расположены на одному реке так, что плот плывущий от А до В со скоростью течения реки, проходит путь от А до В за 24 часа. Весь путь от А до В и обратно катер проходит не менее чем за 10 часов. Если бы собственная скорость (скорость в стоячей воде) катера увеличилась на 40 %, то тот же путь (от А до В и обратно) занял у катера не более 7 часов. Найдите время, за которое катер проходит путь из В в А, когда его собственная скорость не увеличена.

Решение. Пусть s – расстояние между пунктами А и В, u – собственная скорость катера, v – скорость течения. Имеем следующую систему уравнений и неравенств:

Надо определить и полагая (по смыслу задачи, х > 1), преобразуем неравенства:

Так как и х > 1, то после преобразования получим систему неравенств, эквивалентную исходной: 5х 2 – 24х – 5 2 – 9,6х – 1 > 0. Эта система совместна при х = 5. Далее, получаем:

Общие задачи:

Задача 10. Груз вначале погрузили в вагоны вместимостью по 80 тонн, но один вагон оказался загружен не полностью. Тогда весь груз переложили в вагоны вместимостью 60 тонн, однако понадобилось на восемь вагонов больше, и при этом всё равно один вагон остался не полностью загруженным. Наконец, груз переложили в вагоны вместимостью по 50 тонн, однако понадобилось ещё на пять вагонов больше, при этом все такие вагоны были загружены полностью. Сколько тонн груза было?

Решение. Обозначим через n количество вагонов вместимостью 50 тонн, в которые был загружен весь груз, тогда вес груза = 50п тонн. Вагонов вместимостью 60 тонн было использовано (n – 5). Так как в них был помещён весь груз и один вагон оказался не полностью загруженным, то 60 • (п – 5) > 50п и 60 • (п – 6) 50п и 80 • (п – 14) 1) и. Поскольку очевидно, что , то n > 33. Итак, в классе о котором сообщается в газете, учеников не меньше, чем 33. Теперь надо выяснить, какое минимальное количество учеников всё-таки может быть в классе. Легко видеть, что если в классе будет 33 ученика и один из них повысит успеваемость, т.е. если n = 33 и m = 1, то такая пара чисел удовлетворяет неравенство (1). Значит, в классе, о котором сообщается в газете, минимально возможное число учеников 33.

Ответ: 33 учеников.

Задача 12. Все коробки какие есть на базе, имеют одинаковые площади оснований. Грузчики хотят поместить в один контейнер с той же площадью основания 20 коробок. Какой высоты должен быть контейнер. Если высоты коробок оцениваются неравенствами 29 см 20.03.2008

Алгебра. Урок 8. Неравенства, системы неравенств.

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Неравенства
  • Линейные неравенства

Неравенства

Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

≥ больше или равно,

≤ меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой .

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной .

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

НеравенствоГрафическое решениеФорма записи ответа
x cx ∈ ( − ∞ ; c )
x ≤ cx ∈ ( − ∞ ; c ]
x > cx ∈ ( c ; + ∞ )
x ≥ c

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a 0 , то знак неравенства меняется на противоположный , неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство 3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на ( -3 ) – коэффициент, который стоит перед x . Так как − 3 0 , знак неравенства поменяется на противоположный . x 12 − 3 ⇒ x − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на ( 3 ) – коэффициент, который стоит перед x . Так как 3 > 0, знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 6 x ≤ − 1 + 1

Получили верное неравенство, которое не зависит от переменной x . Возникает вопрос, какие значения может принимать переменная x , чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

Ответ:

  1. x – любое число
  2. x ∈ ( − ∞ ; + ∞ )
  3. x ∈ ℝ

№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

x + 6 − 9 x > − 8 x + 48

− 8 x + 8 x > 48 − 6

Получили неверное равенство, которое не зависит от переменной x . Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

Квадратные неравенства

Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.

Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

Алгоритм решения квадратного неравенства методом интервалов

  1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
  1. Отметить на числовой прямой корни трехчлена.

Если знак неравенства строгий > , , точки будут выколотые.

Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

  1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

  1. Выбрать подходящие интервалы (или интервал).

Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

Примеры решения квадратных неравенств:

№1. Решить неравенство x 2 ≥ x + 12.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 1, c = − 12

D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

Это значит, что знак на интервале, в котором лежит точка 6 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

Точки -3 и 4 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

№2. Решить неравенство − 3 x − 2 ≥ x 2 .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = − 2

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

x 1 = − 2, x 2 = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

Это значит, что знак на интервале, в котором лежит точка 0 будет − .

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

Точки -2 и -1 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ [ − 2 ; − 1 ]

№3. Решить неравенство 4 x 2 + 3 x .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = 4

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

Точки -4 и 1 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

№4. Решить неравенство x 2 − 5 x 6.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 5, c = − 6

D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

Это значит, что знак на интервале, в котором лежит точка 10 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

Точки -1 и 6 будут в круглых скобках, так как они выколотые

Ответ: x ∈ ( − 1 ; 6 )

№5. Решить неравенство x 2 4.

Решение:

Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

Это значит, что знак на интервале, в котором лежит точка 3 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

Точки -2 и 2 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 2 ; 2 )

№6. Решить неравенство x 2 + x ≥ 0.

Решение:

Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

x 2 + x = 1 2 + 1 = 2 > 0

Это значит, что знак на интервале, в котором лежит точка 1 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

Дробно рациональные неравенства

Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

Примеры дробно рациональных неравенств:

x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

Алгоритм решения дробно рациональных неравенств:

  1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

  1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
  1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

  1. Нанести нули числителя и нули знаменателя на ось x .

Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые .

Если знак неравенства строгий ,
при нанесении на ось x нули числителя выколотые .

Если знак неравенства нестрогий ,
при нанесении на ось x нули числителя жирные .

  1. Расставить знаки на интервалах.
  1. Выбрать подходящие интервалы и записать ответ.

Примеры решения дробно рациональных неравенств:

№1. Решить неравенство x − 1 x + 3 > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравниваем числитель к нулю f ( x ) = 0.

x = 1 — это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

  1. Приравниваем знаменатель к нулю g ( x ) = 0.

x = − 3 — это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства) .

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

Это значит, что знак на интервале, в котором лежит точка 2 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

№2. Решить неравенство 3 ( x + 8 ) ≤ 5.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

3 ( x + 8 ) − 5 \ x + 8 ≤ 0

3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 x − 40 x + 8 ≤ 0

− 5 x − 37 x + 8 ≤ 0

  1. Приравнять числитель к нулю f ( x ) = 0.

x = − 37 5 = − 37 5 = − 7,4

x = − 7,4 — ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = − 8 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

Это значит, что знак на интервале, в котором лежит точка 0 будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

№3. Решить неравенство x 2 − 1 x > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравнять числитель к нулю f ( x ) = 0.

( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

x 1 = 1, x 2 = − 1 — нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = 0 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

Системы неравенств

Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

Пример системы неравенств:

Алгоритм решения системы неравенств

  1. Решить первое неравенство системы, изобразить его графически на оси x .
  1. Решить второе неравенство системы, изобразить его графически на оси x .
  1. Нанести решения первого и второго неравенств на ось x .
  1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

Примеры решений систем неравенств:

№1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 4 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.

Графическая интерпретация решения:

Точка 2 на графике жирная, так как знак неравенства нестрогий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на отрезке от 2 до 4 . Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

№2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 3 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

3 x − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

Точка -1 на графике выколотая, так как знак неравенства строгий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

Ответ: x ∈ ( − ∞ ; − 1 )

№3. Решить систему неравенств < 3 x + 1 ≤ 2 x x − 7 >5 − x

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения:

  1. Решаем второе неравенство системы

2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

№4. Решить систему неравенств < x + 4 >0 2 x + 3 ≤ x 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения первого неравенства:

  1. Решаем второе неравенство системы

Решаем методом интервалов.

a = − 1, b = 2, c = 3

D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

D > 0 — два различных действительных корня.

x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

Графическая интерпретация решения второго неравенства:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .

Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

Решение задач при помощи неравенств

Задачи на составление уравнений и неравенств занимают важное место в школьном курсе математики. Решение их способствует развитию логического мышления, сообразительности и наблюдательности, развивает умение самостоятельно осуществлять небольшие исследования. Задачи, связанные с неравенствами, бывают двух видов:

  • задачи на сравнение двух выражений;
  • задачи, которые решаются с помощью неравенств, систем неравенств, систем неравенств и уравнений.

Эти задачи необходимо начинать решать уже в восьмом классе. Предлагаемые примеры задач собраны из разных источников и предназначены для школьников и педагогов, любящих решать задачи вообще, и для использования на уроках и факультативных занятиях.

Задачи с решением

Задача 1.

Самолет пролетел путь от А до В по ветру и путь от В до А против ветра, причем скорость ветра не менялась. В другой раз самолет совершил рейс по тому же маршруту в безветренную погоду. В обоих случаях моторы самолета развивали одинаковую мощность. В каком случае на весь полет ушло меньше времени?

Решение.

Ответ. В безветренную погоду.

Задача 2.

Два туриста вышли из пункта А в пункт В. Первый турист половину затраченного времени от начала движения шел со скоростью V1, затем со скоростью V2. Второй же турист первую половину пути шел со скоростью V1, а вторую половину со скоростью V2. Кто из них затратил меньше времени на прохождение пути от А до В?

Решение.

Ответ. Первый турист затратил времени меньше.

Задача 3.

Туристы отправились на моторной лодке по течению реки и должны вернуться обратно к стоянке не позднее чем через 3 часа. На какое расстояние могут отъехать туристы, если скорость течения реки 2 км/ч, а скорость в стоячей воде 18 км/ч?

Решение.

Ответ. Не больше чем на 26 и две третьих км.

Задача 4.

На соревнованиях каждый стрелок делал 10 выстрелов. За каждое попадание он получал 5 очков, за каждый промах с него снимали одно очко. Успешным считалось выступление, при котором стрелок получал не менее 30 очков. Сколько раз стрелок должен попасть в мишень, чтобы его выступление было сочтено успешным?

Ответ. 7, 8, 9 или 10 раз.

Задача 5.

Со склада вывозят железные болванки массой по 500 кг и медные массой 200 кг. На грузовик, который может везти не более 4 тонн, погрузили 12 болванок. Сколько среди них может быть железных болванок?

Решение.

Ответ. Не более 5 болванок.

Задача 6.

Турист на байдарке проплыл по течению реки 6 км, тут же повернул обратно и проплыл против течения реки 4 км. С какой собственной скоростью должен плыть турист, чтобы на все путешествие затратить не более часа, если скорость реки равна 2 км/ч?

Решение.

Ответ. Не менее 10 км/ч

Задача 7.

Около дома посажены липы и березы, причем общее их количество более 14. если увеличить вдвое количество лип, а количество берез на 18, то берез станет больше. Если увеличить вдвое количество берез, не меняя количество лип, то лип все равно будет больше. Сколько лип и сколько берез было посажено?

Решение.

Ответ. 11 лип, 5 берез.

Задача 8.

Группа студентов решила купить цветок ценой от 170 до 195 рублей. Однако в последний момент двое отказались участвовать в покупке, поэтому каждому из оставшихся пришлось внести на 1 руб. больше. Сколько стоил цветок?

Решение.

Ответ. 180 рублей.

Задача 9.

Лодка спускается по течению реки на расстояние 10 км, а затем поднимается против течения на расстояние 6 км. Скорость течения реки равна 1 км/ч. В каких пределах должна быть собственная скорость лодки, чтобы вся поездка заняла от 3 до 4 часов.

Решение.

Задача 10.

Школьник переклеивает все свои марки в новый альбом. Если он наклеит по 20 марок на один лист, то ему не хватит альбома, а если по 23 марки на лист, то по крайней мере один лист окажется пустым. Если школьнику подарить такой же альбом, на каждом листе которого наклеено по 21 марке, то всего у него станет 500 марок. Сколько листов в альбоме?

Решение.

Ответ. 12 листов.

Задача 11.

Пункты А и В расположены на одной реке так, что плот, плывущий из А в В со скоростью течения реки, проходит от А до В за 24 часа. Весь путь от А до В и обратно катер проходит не менее чем за 10 часов. Если бы собственная скорость катера увеличилась на 40%, то тот же путь (от А до В и обратно) занял бы у катера не более 7 часов. Найдите время, за которое катер проходит путь от В в А, когда его собственная скорость не увеличена.

Решение.

Ответ: 6 часов.

Задачи для самостоятельного решения с ответами

Задача 1.

Расстояние между станциями А и В равно 360 км. В одно и то же время из А и В навстречу друг другу выходят два поезда. Поезд, отправившийся из А, прибывает на станцию В не ранее чем через 5 часов. Если бы его скорость была в 1,5 раза больше, чем на самом деле, то он встретил бы второй поезд раньше, чем через два часа после своего выхода из А. Скорость какого поезда больше?

Ответ. Скорость поезда, вышедшего из В, больше.

Задача 2.

Из пункта А в пункт С в 9 часов утра отправился скорый поезд. В это же время из пункта В, расположенного между пунктами А и С, выходят два пассажирских поезда, первый из которых следует в пункт А, а второй – в пункт С. Причем, скорости пассажирских поездов равны. Скорый поезд встречает первый пассажирский поезд не позже чем через 3 часа после его отправления, потом приходит в пункт В не ранее 14 часов того же дня и, наконец, прибывает в пункт С одновременно с первым пассажирским поездом. Найти время прибытия в пункт А первого пассажирского поезда.

Ответ. 16 ч 30 мин.

Задача 3.

Из А в В по течению реки плывет плот. Одновременно с тем, когда плот начал путь из А в В, из В в А навстречу ему поплыла лодка, которая встречает плот не ранее чем через 2 ч и затем прибывает в А, затратив на весь путь менее 3 ч 20 мин. Успеет ли плот преодолеть путь из А в В за 5 ч, если расстояние между А и В равно 20 км?

Ответ. Не успеет.

Задача 4.

Квартал застроен пятиэтажными и девятиэтажными домами, причем девятиэтажных домов меньше, чем пятиэтажных. Если число девятиэтажных домов увеличить вдвое, то общее число домов станет более 24, а если увеличить вдвое число пятиэтажных домов, то общее число домов станет менее 27. сколько построено пятиэтажных домов и сколько девятиэтажных?

Ответ. 9 пятиэтажных и 8 девятиэтажных.

Задача 5.

Пункты А и В расположены на одной реке так, что плот, плывущий из А в В со скоростью течения реки, проходит путь от А до В за 24 часа. Весь путь от А до В и обратно моторная лодка проходит не менее чем за 10 ч. если бы собственная скорость моторной лодки увеличилась на 40% , то тот же путь (т.е. путь от А до В и обратно) занял бы у лодки не более 7 ч. Найти время, за которое моторная лодка проходит путь от А до В в случае, когда ее собственная скорость не увеличена.

Задача 6.

В 9 ч утра из пункта А выезжает велосипедист, который едет до пункта В. Через 2 ч после выезда велосипедиста из А в В выезжает автомобилист, который догоняет велосипедиста не позже 12 ч дня. Продолжая движение, автомобилист прибывает в пункт В, мгновенно поворачивает и едет из В в А. На этом пути автомобилист встречает велосипедиста и потом прибывает в пункт А в 17 ч того же дня. Найти время прибытия велосипедиста в пункт В , если известно, что между двумя встречами велосипедиста и автомобилиста прошло не более 3 ч.

Ответ. 18 ч.

Задача 7.

От пристани А вниз по реке, скорость течения которой равна V км/ч, отходит плот. Через час вслед за ним выходит катер, скорость которого в стоячей воде равна 10 км/ч. догнав плот, катер возвращается обратно. Определить все те значения V ,при которых к моменту возвращения катера в А плот проходит более 15 км.

Хотите получать уведомления о возможности бесплатной публикации в журналах из списка ВАК и РИНЦ?

Опубликовать статью в журнале из списка ВАК — бесплатно без регистрации


источники:

http://epmat.ru/modul-algebra/urok-8-neravenstva-sistemy-neravenstv/

http://www.infobraz.ru/library/mathematics/reshenie-zadach-pri-pomoshchi-neravenstv