Принцип действия и уравнение генератора

Принцип работы электрического генератора

Генератор – это устройство, которое производит продукт, вырабатывает электроэнергию либо создает электромагнитные, электрические, звуковые, световые колебания и импульсы. В зависимости от функций их можно разделить на несколько видов.

Генератор постоянного тока

Основной принцип работы генератора постоянного тока зависит от воздействия раздела энергии на магнитный поток основного полюса и, соответственно, от получаемого с коллектора напряжения при неизменном положении щеток на нем. У аппаратов, которые оснащены добавочными полюсами, элементы располагаются таким образом, чтобы токораздел полностью совпадал с геометрической нейтральностью. Благодаря этому, он будет смещаться по линии вращения якоря в положение оптимальной коммутации с последующим закреплением щеткодержателей в таком положении.

Генератор переменного тока

Принцип работы генератора переменного тока основан на превращении механической в электроэнергию благодаря вращению проволочной катушки в созданном магнитном поле.

Это приспособление состоит из неподвижного магнита и проволочной рамки.

Каждый из ее концов соединяется между собой при помощи контактного кольца, которое скользит по электропроводной угольной щетке.

За счет такой схемы электрический индуцированный ток начинает переходить к внутреннему контактному кольцу в тот момент, когда половина рамки, соединяющаяся с ним, проходит мимо северного полюса магнита и, наоборот, к внешнему кольцу в тот момент, когда другая часть проходит мимо северного полюса.

Самый экономичный способ, на котором основывается принцип работы генератора переменного тока, является сильная выработка. Это явление получается за счет использования одного магнита, который вращается относительно нескольких обмоток. Если его вставить в проволочную катушку, он начнет индуцировать электрический ток, таким образом будет заставлять стрелку гальванометра отклонятся в сторону от положения «0». После того как магнит будет вынут из кольца, ток поменяет свое направление, а стрелка прибора начнет отклоняться в другую сторону.

Автомобильный генератор

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

Электрический генератор

Принцип работы электрического генератора заключается в переработке энергии механической на электрическое поле. Основными источниками такой силы могут быть вода, пар, ветер, двигатель внутреннего сгорания. Принцип работы генератора основывается на совместном взаимодействии магнитного поля и проводника, а именно в момент вращения рамки ее начинают пересекать линии магнитной индукции, и в это время появляется электродвижущая сила. Она заставляет ток протекать по рамке при помощи контактных колец и вливаться во внешнюю цепь.

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию.

Такие приборы применяют как временные, а также постоянные источники питания.

Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения.

Дизельный генератор

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Синхронный генератор

Принцип работы синхронного генератора основан на одинаковой чистоте вращения магнитного поля статора и ротора, который и создает вместе с полюсами магнитное поле, и оно пересекает обмотку статора. В этом агрегате ротор — постоянный электромагнит, число полюсов которого может начинаться от 2-х и выше, но кратным они должны быть 2-м.

При запуске генератора ротор создает слабое поле, но после увеличения оборотов начинает появляться большая сила в обмотке возбуждения. Получаемое напряжение через автоматический блок регулировки поступает на устройство и контролирует выходное напряжение за счет изменений в магнитном поле. Основной принцип работы генератора заключается в высокой стабильности исходящего напряжения, а недостатком является существенная возможность перегрузок по току. Еще к негативным качествам можно добавить присутствие щеточного узла, который все равно в определенное время придется обслуживать, а это само собой влечет дополнительные финансовые затраты.

Асинхронный генератор

Принцип работы генератора заключается в постоянном нахождении в режиме торможения с ротором, который вращается с опережением, но все-таки в той же ориентации, что и магнитное поле у статора.

В зависимости от используемого типа обмотки ротор может быть фазным или короткозамкнутым. Созданное при помощи вспомогательной обмотки вращающееся магнитное поле начинает индуцировать его на роторе, которое и вращается вместе с ним. Частота и напряжение на выходе напрямую зависит от количества оборотов, так как магнитное поле не регулируется и остается неизменным.

Электрохимический генератор

Также существует электрохимический генератор, устройство и принцип работы которого заключаются в выработке из водорода электрической энергии в автомобиле для его движения и питания всех электроприборов. Этот аппарат является химическим источником тока, так как он производит энергию за счет прохождения реакции кислорода и водорода, который для выработки топлива используется в газообразном состоянии.

Генератор акустических помех

Принцип работы генератора акустических помех заключается в защите организаций и физических лиц от прослушивания переговоров и различного рода мероприятий. За ними можно проследить через оконные стекла, стены, системы вентиляции, отопительные трубы, радиомикрофоны, проводные микрофоны и устройства лазерного съема полученной акустической информации с окон.

Регулятор напряжения

Основной принцип работы регулятора напряжения основывается на поддерживании энергии бортовой сети во всех режимах работы при разнообразном изменении частоты поворотов ротора генератора, температуры внешней среды и электрической нагрузки. Этот прибор также может выполнять и второстепенные функции, а именно защищать части генераторной установки от возможного аварийного режима установки и перегрузки, автоматически подключать в бортовую систему цепь обмотки возбуждения либо сигнализацию аварийной работы устройства.

Все такие приборы работают по одному принципу. Напряжение в генераторе определяется несколькими факторами – силой тока, частотой вращения ротора и величиной магнитного потока. Чем меньше нагрузка на генератор и выше частота вращения, тем будет больше напряжение устройства. Благодаря большему току в обмотке возбуждения начинает увеличиваться магнитный поток, а с ним и напряжение в генераторе, а после того, как уменьшается ток, становится меньшим и напряжение.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Основные сферы применения

В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:

  • Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
  • Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
  • Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.

Устройство автомобильного генератора и его проверка

Пишет jorik101 в своём блоге.

обозначения клемм генератора, схемы ссылка 1Как проверить автомобильный генератор ссылка 2

Устройство и принцип работы автомобильного генератораЭлектрооборудование любого автомобиля включает в себя генератор — устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Требования, предъявляемые к генератору:выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи;напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.

Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи и, ускоренному выходу ее из строя.

Принцип работы генератора и его принципиальное конструктивное устройство одинаковы для всех автомобилей, отличаются только качеством изготовления, габаритами и расположением присоединительных узлов.

Основные части генератора:1. Шкив – служит для передачи механической энергии от двигателя к валу генератора посредством ремня;2. Корпус генератора состоит из двух крышек: передняя (со стороны шкива) и задняя (со стороны контактных колец), предназначены для крепления статора, установки генератора на двигателе и размещения подшипников (опор) ротора. На задней крышке размещаются выпрямитель, щеточный узел, регулятор напряжения (если он встроенный) и внешние выводы для подключения к системе электрооборудования;3. Ротор — стальной вал с расположенными на нем двумя стальными втулками кпювообразной формы. Между ними находится обмотка возбуждения, выводы которой соединены с контактными кольцами. Генераторы оборудованы преимущественно цилиндрическими медными контактными кольцами;4. Статор — пакет, набранный из стальных листов, имеющий форму трубы. В его пазах расположена трехфазная обмотка, в которой вырабатывается мощность генератора;5. Сборка с выпрямительными диодами — объединяет шесть мощных диодов, запрессованных по три в положительный и отрицательный теплоотводы;6. Регулятор напряжения — устройство, поддерживающее напряжение бортовой сети автомобиля в заданных пределах при изменении электрической нагрузки, частоты вращения ротора генератора и температуры окружающей среды;7. Щеточный узел – съемная пластмассовая конструкция. В ней установлены подпружиненные щетки, контактирующие с кольцами ротора;8. Защитная крышка диодного модуля.

Рассмотрим электрическую схему соединения элементов генератора.

Принципиальная электрическая схема генераторной установки:1. Включатель зажигания;2. Помехоподавляющий конденсатор;3. Аккумуляторная батарея;4. Лампа-индикатор исправности генератора;5. Положительные диоды силового выпрямителя;6. Отрицательные диоды силового выпрямителя;7. Диоды обмотки возбуждения;8. Обмотки трех фаз статора;9. Обмотка возбуждения(ротор);10. Щеточный узел;11. Регулятор напряжения;B+ Выход генератора «+»;B- «Масса» генератора;D+ Питание обмотки возбуждения, опорное напряжение для регулятора напряжения.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется электрическое напряжение, пропорциональное скорости изменения магнитного потока. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются источник переменного магнитного поля и катушка, с которой непосредственно будет сниматься переменное напряжение.

Обмотка возбуждения с полюсной системой, валом и контактными кольцами образуют ротор, его важнейшую вращающуюся часть, которая и является источником переменного магнитного поля.

Ротор генератора1. вал ротора;2. полюса ротора;3. обмотка возбуждения;4. контактные кольца.

Полюсная система ротора имеет остаточный магнитный поток, который присутствует даже при отсутствии тока в обмотке возбуждения. Однако его значение невелико и способно обеспечить самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому, для первоначального намагничивания ротора через его обмотку пропускают небольшой ток от аккумуляторной батареи, обычно через лампу контроля работоспособности генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, чтобы генератор мог возбудиться уже на холостых оборотах двигателя. Исходя из этих соображений, мощность контрольной лампы обычно составляет 2…3 Вт. После того, как напряжение на обмотках статора достигает рабочей величины, лампа тухнет, и питание обмотки возбуждения осуществляется от самого генератора. В этом случае генератор работает на самовозбуждении.

Выходное напряжение снимается с обмоток статора. При вращении ротора напротив катушек обмотки статора появляются попеременно «северный» и «южный» полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку статора, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения зависит от частоты вращения ротора генератора и числа его пар полюсов.

Статор генератора1. обмотка статора;2. выводы обмоток;3. магнитопровод.

Обмотка статора трехфазная. Она состоит из трех отдельных обмоток, называемых обмотками фаз или просто фазами, намотанных по определенной технологии на магнитопровод. Напряжение и токи в обмотках смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов, как это показано на рисунке.

Осциллограммы фазовых напряжений обмотокU1, U2, U3 – напряжения обмоток;Т – период сигнала (360 градусов);F – фаза смещения (120 градусов).

Фазовые обмотки могут соединяться в «звезду» или «треугольник».

Виды соединения обмоток1. «звездой»;2. «треугольником».

При соединении в «треугольник» ток в каждой из обмоток в 1,7 раза меньше тока, отдаваемого генератором. Это значит, что при том же отдаваемом генератором токе, ток в обмотках при соединении в «треугольник» значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т. к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в «звезду», т. е. получается «двойная звезда».

Для того, чтобы магнитный поток обмотки возбуждения подводился непосредственно к обмотке статора и не рассеивался в пространстве, катушки помещены в пазы стальной конструкции — магнитопровода. Так как переменное магнитное поле наводится не только в катушках, но и в магнитопроводе статора, то это приводит к возникновению паразитных вихревых токов, которые ведут к потере мощности и нагревают статор. Для уменьшения проявления этого эффекта магнитопровод изготавливают из набора стальных пластин (пакета железа).

Бортовая сеть автомобиля требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор. Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом «+» генератора, а другие три с выводом «—» («массой»). Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении. Следует обратить внимание на то, что под термином «выпрямительный диод» не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.

Сборка с выпрямительными диодами1. силовые диоды;2. дополнительные диоды;3. теплоотвод.

Многие производители в целях защиты электронных узлов автомобиля от всплесков напряжения заменяют диоды силового моста стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+» генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя» используется и в регуляторах напряжения.

Как было отмечено выше, напряжения на обмотках изменяются по кривым, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t когда напряжение второй фазы отсутствует, первой фазы — положительно, а третьей — отрицательно. Направление напряжений фаз соответствует стрелкам показанным на рисунке.

Направление токов в обмотках и выпрямителе генератора

Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. Рассмотрев любые другие моменты времени, легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление — от вывода «+» генераторной установки к ее выводу «—» («массе»), т. е. в нагрузке протекает постоянный (выпрямленный) ток.

У значительного количества типов генераторов обмотка возбуждения подключается к собственному выпрямителю, собранному на трех диодах. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленным током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, три из них общие с силовым выпрямителем (отрицательные диоды). Ток возбуждения значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов обмотки возбуждения применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25… 35 А).

При необходимости увеличения мощности генератора применяется дополнительное плечо выпрямителя.

Схема генераторной установки с дополнительными диодами

Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды». Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками — первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой.

Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном — нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения не может быть использована потребителями. Чтобы использовать эту мощность, добавлены диоды, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5…15% при частоте вращения более 3000 мин-1.

Напряжение генератора без регулятора сильно зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение. Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Ранее применялись вибрационные регуляторы, а затем контактно-транзисторные. Эти два типа регуляторов в настоящее время полностью вытеснены электронными.

Оформление электронных полупроводниковых регуляторов может быть различным, но принцип работы у всех регуляторов одинаков. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Недостатком приведенного варианта подключения регулятора является то, что регулятор поддерживает напряжение на выводе «D+» генератора, а потребители, в том числе, аккумуляторная батарея, включены на вывод «В+». Кроме того, при таком включении регулятор не воспринимает падения напряжения в соединительных проводах между генератором и аккумуляторной батареей и не вносит корректировок в напряжение генератора, чтобы компенсировать это падение. Эти недостатки устранены в следующей схеме, где напряжение на входную цепь регулятора подается от того узла, где его следует стабилизировать, обычно, это вывод «В+» генератора.

Усовершенствованная схема стабилизации напряжения

Некоторые регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С.

Автор: Евгений Куришко

О том как проверить автомобильный генератор своими руками

Генератор играет в автомобиле очень важную роль, для двигателя он — вроде мини электростанции, которая снабжает всю бортовую сеть автомобиля, включая аккумулятор (АКБ). Неисправность генератора приведет к неминуемой полной разрядке АКБ, после чего двигатель вашего автомобиле просто перестанет работать, равно как и вся бортовая сеть. В итоге вам придется «прикуривать» свой автомобиль или искать новый источник энергии. Очень важно вовремя обнаружить неисправность генератора, для того чтобы не допустить вышеописанного сценария. Для того чтобы произвести диагностику генератора нужно обладать определенными навыками и инструментом. В этой статье я расскажу вас о том, как проверить генератор в домашних условиях при помощи мультиметра.

Для начала о мерах предосторожности и правилах безопасности во время проверки

Нужно быть предельно осторожным и понимать то, что делаешь, для того чтобы нечаянно не повредить генератор или его детали (реле регулятор, диоды выпрямительного моста).

Проверять работоспособность генератора путем проверки его «на искру», то есть методом короткого замыкания.Соединять клемму «30» (иногда обозначаться как «В+») с клеммой 67 («D+») или «массой».Допускать работу генератора при выключенных потребителях, например при отключении его от аккумуляторной батареи.Проверять вентили генератора напряжением выше 12 В.

Проверять исправность генератора при помощи вольтметра или амперметра.Во время сварочных работ на кузове автомобиля необходимо отключать провода от генератора и АКБ.Во время замены проводки в системе генератора провода должны иметь такое же сечение и длину как и «родные» провода.Перед тем как проверить генератор убедитесь в правильном натяжении ремня генератора, а также исправности всех соединений и клемм. Нормальной считается натяжка ремня, при которой нажимая большим пальцем на середину ремня, он прогнется не больше чем на 10-15 мм.

Проверка генератора автомобиля своими руками

Чтобы проверить регулятор напряжения вам потребуется вольтметр со шкалой от 0 до 15 В. Прежде чем приступать к проверке дайте мотору поработать на средних оборотах при включенных фарах примерно 15 минут. Проверьте напряжение между «массой» генератора и выводами «30» («В+»), на вольтметре у вас должно быть нормальное для вашего автомобиля напряжение (для владельцев «девятки» например, нормальным считается напряжение — 13,5 – 14,6 В). Если напряжение выше или ниже установленного производителем — скорее всего придется заменить регулятор. Не лишним будет также проверить регулируемое напряжение, для этого подключите вольтметр непосредственно к клеммам АКБ. Правда, результаты такой проверки нельзя считать на 100% правильными, потому что есть вероятность проблем с проводкой. Если вы уверены в исправности проводки, тогда результатам можно доверять. Мотор должен работать на высоких оборотах, которые приближены к максимальным, фары и другие потребители электроэнергии автомобиля должны быть включенными. Размер напряжения должен совпадать с параметрами вашего автомобиля.

Проверка диодного моста относится к комплексу проверок генератора. Для того чтобы проверить диодный мост подключите вольтметр или мультиметр к зажиму «30» («В+») генератора, а также к «массе», и включите прибор в режим измерения переменного тока. Переменный ток на диодном мосту не должен превышать 0,5 В, если у вас вышло больше — скорее всего диоды неисправны.

Пробои на «массу»

Проверка пробивания на «массу» не будет лишней в случае если «гена компостирует мозги». Для этого необходимо отключить аккумуляторную батарею и провод генератора, который идет к клемме «30» («В+»). После этого подключите прибор между клеммой «30» («В+») и отключенным проводом генератора. Смотрим на показания — если на приборе ток разряда превышает 0,5 мА, скорее всего есть пробой диодов или изоляции обмоток генератора.

Сила тока отдачи

Сила тока отдачи генератора проверяется при помощи специального зонда («примочка» дополнение к мультиметру в виде зажима или клещей), которым провод охватывают, измеряя тем самым силу тока, идущего по проводу.

Для проверки тока отдачи нужно зондом обхватить провод, который идет к зажиму «30» («В+»).Заведите двигатель – во время проведения измерения он должен работать на высоких оборотах.Включайте по очереди электропотребители и считывайте показания прибора отдельно для каждого потребителя.В конце измерений вам необходимо подсчитать сумму показаний. Далее, включите все потребители (которые вы включали поочередно) одновременно и произведите замер показаний мультиметра. Величина не должна быть меньше суммы показаний отдельно измеренных показателей, допустимое расхождение — 5 А.Проверка тока возбуждения генератора выполняется посредством запуска двигателя и последующей его работы на высоких оборотах. После чего измерительный зонд помещается вокруг провода, ведущего к клемме 67 («D+»). Исправный генератор должен показать величину тока возбуждения — равную 3-7 А.

Чтобы проверить обмотки возбуждения потребуется снятие регулятора напряжения, а также щеткодержателя. Если будет необходимость произведите зачистку контактных колец и проверьте обмотку на предмет отсутствия обрывов и замыканий на «массу». Проверять необходимо омметром, его щупы прикладываются к контактным кольцам, после чего снимаются показания. Сопротивление должно быть в пределах от 5 до 10 Ом. После подключите один электрод прибора к любому из контактных колец, а другой к статору генератора. На дисплее должна показываться бесконечно высокое сопротивление, в противном случае — обмотка возбуждения где-то замыкает на «массу».

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Содержание

  1. Устройство и принцип работы
  2. Классификация
  3. С параллельным возбуждением
  4. С независимым возбуждением
  5. С последовательным возбуждением
  6. Со смешанным возбуждением
  7. Технические характеристики генератора постоянного тока
  8. Реакция якоря
  9. ЭДС
  10. Мощность
  11. КПД
  12. Применение
  13. Видео по теме

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, wt – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Принцип работы

Генераторы, работающие на принципе электромагнитной индукции, не создают электричества. Они с помощью механической энергии лишь приводят в движение электрические заряды, которые всегда присутствуют в проводниках. Принцип работы электрогенератора можно сравнить с водяным насосом, вызывающим поток воды, но не создающим воду в трубах. Подавляющее большинство индукционных генераторов представляет собой электрические машины вращательного типа, состоящие из двух основных компонентов:

  • статор (неподвижная часть);
  • ротор (вращающаяся часть).

Для иллюстрации того, как работает электрогенератор, может служить простейшая электрическая машина, состоящая из витка проволоки и U-образного магнита. Основные принципиальные элементы этой модели:

  • магнитное поле;
  • движение проводника в магнитном поле.

Магнитным полем называется область вокруг магнита, где его сила ощутима. Чтобы лучше понимать работу модели, можно представить силовые линии, выходящие с северного полюса магнита и возвращающиеся в южный. Чем сильнее магнит, тем большее количество силовых линий он создаёт. Если виток начать вращать между полюсами, то обе его стороны начнут пересекать воображаемые магнитные линии. Это вызывает движение электронов в проводнике (генерацию электричества).

В соответствии с правилом правой руки при вращении витка в нём будет индуцироваться ток, изменяющий своё направление через каждые пол-оборота, так как силовые линии сторонами витка будут пересекаться то в одном, то в другом направлении. Дважды за каждый оборот виток проходит через положения (параллельно полюсам), при которых электромагнитная индукция не возникает. Таким образом, простейший генератор работает как электрическая машина, производящая переменный ток. Создаваемое им напряжение может быть изменено за счёт:

  • силы магнитного поля;
  • скорости вращения витка;
  • количества витков провода, пересекающих силовые линии магнитного поля.

Виток проводника, проворачивающийся между полюсами магнита, создаёт ещё один важный эффект. Когда в витке протекает ток, он создаёт электромагнитное поле, обратное полю постоянного магнита. И чем больше электричества индуцируется в витке, тем сильнее магнитное поле и сопротивление проворачиванию проводника. Эта же магнитная сила в витках вызывает вращение ротора электромотора, то есть при определённых условиях генераторы могут работать как двигатели и наоборот.

Особенности генераторов AC

Переменный ток (AC) производит описанный простейший генератор. Для того чтобы созданное электричество можно было использовать, его нужно каким-то образом доставить к нагрузке. Это осуществимо при помощи контактного узла на валу, состоящего из вращающихся колец и скользящих по ним фиксированных деталей из углерода, называемых щётками. Каждый конец вращающегося проводника соединён с соответствующим кольцом, и ток, таким образом создаваемый в витке, проходит через кольца и щётки к нагрузке.

Строение промышленных машин

Практические генераторы отличаются от простейших. Обычно они снабжены возбудителем — вспомогательным генератором, подающим постоянный ток электромагнитам, используемым для создания магнитного поля в генераторе.

Вместо витка в простейшей модели практические устройства оснащают обмотками из медной проволоки, а роль магнита выполняют катушки на железных сердечниках. В большинстве генераторов переменного тока электромагниты, создающие переменное поле, размещаются на роторе, а электроэнергия индуцируется в катушках статора.

В подобных устройствах коллектор используется для переноса постоянного тока от возбудителя на магниты. Это значительно упрощает конструкцию, так как удобнее передавать через щётки слабые токи и принимать высокое напряжение с неподвижных обмоток статора.

Применение в сетях

В некоторых машинах количество секций обмоток совпадает с количеством электромагнитов. Но большинство генераторов AC оснащено тремя наборами катушек для каждого полюса. Такие машины производят три потока электричества и называются трёхфазными. Их удельная мощность значительно выше, чем у однофазных.

На электростанциях в качестве преобразователей механической энергии в электрическую служат генераторы AC. Это связано с тем, что напряжение переменного тока легко увеличить или уменьшить с помощью трансформатора. В крупных генераторах производится напряжение около 20 тыс. вольт. Затем оно повышается более чем на порядок для возможности транспортировки электричества на большие расстояния. В месте применения электроэнергии с помощью серии понижающих трансформаторов создаётся напряжение, пригодное для использования.

Устройство динамо-машин

Виток провода, вращающийся между полюсами магнита, за каждый оборот дважды меняет полюса на концах проводника. Чтобы превратить простейшую модель в генератор постоянного тока, необходимо сделать две вещи:

  • отвести ток с витка на нагрузку;
  • организовать протекание отведённого тока только в одном направлении.

Роль коллектора

Устройство, называемое коллектором, способно выполнить обе задачи. Его отличие от контактного щёточного узла в том, что его основу составляет не кольцо из проводника, а набор из сегментов, изолированных друг от друга. Каждый конец вращающегося контура соединён с соответствующим сектором коллектора, а две неподвижные угольные щётки снимают с коммутатора электрический ток.

Коллектор устроен таким образом, что независимо от полярности на концах витка и фазы вращения ротора контактная группа обеспечивает току нужное направление при передаче его на нагрузку. Обмотки в практических динамо состоят из множества сегментов, поэтому для генераторов постоянного тока из-за необходимости их коммутации схема, при которой якорь с индуцируемыми катушками вращается в магнитном поле, оказалась предпочтительнее.

Питание электромагнитов

Классические динамо используют постоянный магнит для индуцирования поля. Остальные генераторы DC нуждаются в питании для электромагнитов. В так называемых раздельно возбуждаемых генераторах для этого используются внешние источники постоянного тока. Самовозбуждающиеся устройства реализуют часть самостоятельно производимого электричества для управления электромагнитами. Запуск таких генераторов после остановки зависит от их возможности накапливать остаточный магнетизм. В зависимости от способа соединения катушек возбуждения с обмотками якоря разделяют:

  • шунтовые (с параллельным возбуждением);
  • сериесные (с последовательным возбуждением);
  • смешанного возбуждения (с комбинацией шунтового и последовательного).

Типы возбуждения применяются в зависимости от требуемого контроля напряжения. Например, генераторы, используемые для зарядки аккумуляторов, нуждаются в простом управлении напряжением. В этом случае подходящим типом будет шунтовой. В качестве машин, генерирующих энергию для пассажирского лифта, применяют отдельно возбуждаемый генератор, так как подобные системы требуют сложного управления.

Применение коллекторных генераторов

Многие генераторы DC приводятся в действие двигателями переменного тока в комбинациях, называемых мотор-генераторными установками. Это один из способов изменения переменного тока на постоянный. Заводы, выполняющие гальванизацию, производящие алюминий, хлор и некоторые другие материалы электрохимическим способом, нуждаются в большом количестве прямого тока.

С помощью дизель-электрогенераторов производится также энергоснабжение DC на локомотивах и судах. Поскольку коллекторы являются сложными и ненадёжными устройствами, зачастую генераторы DC заменяются на машины, производящие AC в сочетании с электронными. Коммутаторные генераторы нашли применение в маломощных сетях, позволяющих использовать динамо на постоянных магнитах без контуров возбуждения.

Существуют и другие типы устройств, которые способны производить электричество. К ним относятся электрохимические батареи, термоэлектрические и фотоэлектрические элементы, топливные преобразователи. Но в сравнении с индукционными генераторами AC/DC их доля в мировом производстве энергии ничтожна.

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила — ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

Магнитные генераторы газового типа

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока — вырабатывать электроэнергию в промышленных масштабах.

Назначение и принцип действия генератора постоянного тока.

Конструкция генератора

Рассмотрим, что представляет собой генератор постоянного тока. Во-первых, это изготовленный из прочной стали или чугуна корпус устройства. По корпусу также проходит магнитное поле, создаваемое полюсами генератора. Во-вторых, это ротор и статор.

На ферромагнитный статор закрепляется катушка возбуждения. Направление магнитного потока определяют сердечники статора, оснащённые полюсами.

Для большого КПД самого генератора, ротор собран из металлических пластин. Кроме того такая конструкция ротора позволяет значительно сократить появление вихревых токов.

На металлические пластины сердечника наматывают медную или обмедненную обмотку – обмотку самовозбуждения. Количество щеток генератора, изготавливаемых из графита, зависит от количества полюсов на нем, как минимум две. Конструкцию генератора мы можем наглядно рассмотреть на рисунке.

Вывод контура генератора соединяются с помощью коллекторных пластин. Пластины делаются из доступного и хорошего проводника электрического тока – меди, а разделяются между собой диэлектриком.

Основные параметры электродвигателя постоянного тока

Постоянная момента

  • где M — момент электродвигателя, Нм,
  • – постоянная момента, Н∙м/А,
  • I — сила тока, А

Постоянная ЭДС

Направление ЭДС определяется по правилу правой руки. Направление наводимой ЭДС противоположно направлению протекающего в проводнике тока.
Наведенная ЭДС последовательно изменяется по направлению из-за перемещения проводников в магнитном поле. Суммарная ЭДС, равная сумме ЭДС в каждой катушке, прикладывается к внешним выводам двигателя. Это и есть противо-ЭДС. Направление противо-ЭДС противоположно приложенному к двигателю напряжению. Значение противо-ЭДС пропорционально частоте вращения и определяется из следующего выражения: [1]

  • где — электродвижущая сила, В,
  • – постоянная ЭДС, В∙с/рад,
  • — угловая частота, рад/с

Постоянные момента и ЭДС в точности равны между собой KT = KE. Постоянные KT и KE равны друг другу, если они определены в единой системе едениц.

Постоянная электродвигателя

Одним из основных параметров электродвигателя постоянного тока является постоянная электродвигателя Kм. Постоянная электродвигателя определяет способность электродвигателя преобразовывать электрическую энергию в механическую.

  • где — постоянная электродвигателя, Нм/√ Вт ,
  • R — сопротивление обмоток, Ом,
  • – максимальный момент, Нм,
  • — мощность потребляемая при максимальном моменте, Вт

Постоянная электродвигателя не зависит от соединения обмоток, при условии, что используется один и тот же материал проводника. Например, обмотка двигателя с 6 ветками и 2 параллельными проводами вместо 12 одиночных проводов удвоят постоянную ЭДС, при этом постоянная электродвигателя останется не изменой.

Жесткость механической характеристики двигателя

  • где — жесткость механической характеристики электродвигателя постоянного тока

Напряжение электродвигателя

Уравнение баланса напряжений на зажимах двигателя постоянного тока имеет вид (в случае коллекторного двигателя не учитывается падение напряжения в щеточно-коллекторном узле):

Уравнение напряжения выраженное через момент двигателя будет выглядеть следующим образом:

Соотношение между моментом и частотой вращения при двух различных напряжениях питания двигателя постоянного тока неизменно. При увеличении частоты вращения момент линейно уменьшается. Наклон этой функции KTKE/R постоянный и не зависит от значения напряжения питания и частоты вращения двигателя.

Благодаря таким характеристикам упрощается управление частотой вращения и углом поворота двигателей постоянного тока. Это характерно для коллекторных и вентильных двигателей постоянного тока, что нельзя сказать о двигателях переменного тока и шаговых двигателях [1].

Мощность электродвигателя постоянного тока

Упрощенная модель электродвигателя выглядит следующим образом:

  • где I – сила тока, А
  • U — напряжение, В,
  • M — момент электродвигателя, Н∙м
  • R — сопротивление токопроводящих элементов, Ом,
  • L — индуктивность, Гн,
  • Pэл — электрическая мощность (подведенная), Вт
  • Pмех — механическая мощность (полезная), Вт
  • Pтеп — тепловые потери, Вт
  • Pинд — мощность затрачиваемая на заряд катушки индуктивности, Вт
  • Pтр — потери на трение, Вт

Механическая постоянная времени

Механическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое частота вращения ненагруженного электродвигателя достигает уровня в 63,21% (1-1/e) от своего конечного значения.

  • где — механическая постоянная времени, с

Принцип действия

Принцип действия генератора постоянного тока, как и любого другого устройства похожего типа основан на знакомого нам со школы явления электромагнитной индукции и появление в устройстве электродвижущей силы – ЭДС. Вспомним школьную физику: если к проводнику с вращающимся внутри него постоянным магнитом присоединить какую-либо нагрузку, то в ней появится переменный ток. Такое возможно из-за того, что поменялись местами магнитные полюса самого магнита.

Чтобы получить ток постоянный необходимо присоединять точки подключения нагрузки синхронно со скоростью вращения магнита. Для этого и предназначен в генераторе коллектор, закреплённый на роторе и крутящийся с той же частотой.

Снимается полученная в результате всего этого процесса энергия с помощью графитных щёток, обладающих хорошей проводимостью и достаточно низким трением. Когда происходит переключения пластин коллектора ЭДС равна нулю, но полярность ее не меняется, за счёт переподключения на другой проводник.

Генератор параллельного возбуждения и его характеристики

В генераторе параллельного возбуждения, который иногда назы­вают шунтовым,

обмотка возбуждения включена параллельно обмотке якоря (рис. 33, а).

При вращении якоря генератора магнитный поток остаточного магнетизма индуктирует в его обмотке небольшую э. д. с, а так как к якорю подключена обмотка возбуждения полюсов, то в ней появ­ляется незначительный ток, обусловленный этой э. д. с. Ток возбу­ждения вызывает увеличение магнитного потока полюсов, что, в свою очередь, приводит к увеличению э. д. с. и т. д.

Величина установившегося напряжения холостого хода зависит от величины сопротивления цепи возбуждения, а также от степени насыщения магнитной системы машины.

Основные условия самовозбуждения генератора постоянной тока параллельного возбуждения таковы:

а)Наличие в стали полюсов остаточного магнетизма.Отсутствие остаточного магнетизма редко наблюдается в машинах постоянного тока. Для восстановления остаточного магнетизма об­мотку возбуждения па короткое время нужно подключить к источнику постоянного тока.


б)Правильное (согласное) соединение обмотки возбуждения иобмотки якоря, чтобы магнитный поток, создаваемый обмоткой возбуждения, совпадал по направлению с маг­нитным потоком остаточного магнетизма.Если обмотки возбуждения и якоря включены так, что магнитные потоки полюсов и остаточного магнетизма направлены встречно, то происходит размагничивание полюсов, препятствующее возбужде­нию машины. Для возбуждения машины нужно изменить направление вращения якоря или переключить концы обмотки возбуждения.

в)Выведение регулировоч­ного реостата из цепи возбуждения.Когда реостат в цепи обмотки возбуждения не выведен, по обмотке возбуждения протекает очень малый ток, недостаточный для самовоз­буждения.

г)Отключение нагрузки у генера­торов параллельного возбуждения. Если нагрузка не отключена, то ток в обмотке возбуждения недо­статочен для самовозбуждения.

Рис. 33. Генератор параллельного возбуждения: а) схема; б) внешняя характеристика

Характеристики холостого хода(U = f(Iв)

при
Iнг.
=
0
и
n= const)
и
регулировочная(IВ =f(Iнг)
при
п =
const и
U =
const) для генератора параллельного возбуждения снимаются таким же образом, как и для генератора независимого возбуждения; их вид и назначение те же.
Характеристика короткого замыкания(1
к =
f(Iв)
при
п =
const и
U = 0)
в этом случае подобна той же характеристике генератора независимого возбуждения; снять ее можно только по схеме независимого возбуждения, так как у короткозамкнутого генератора параллельного возбуждения не будет тока возбуждения.

Внешняя характеристика генератора параллельного возбуждения значительно отличается от аналогичной характеристики генератора независимого возбуждения. Эту характеристику снимают по схеме, приведенной на рисунке 33, а.

Для сравнения на рисунке 33, б

приведены внешние характеристики генератора независимого возбуждения
(1)
и параллельного возбуждения
(2).
По мере увеличения нагрузки напряжение генератора независи­мого возбуждения постепенно понижается вследствие падения напря­жения на сопротивлении обмотки якоря и размагничивающего дей­ствия реакции якоря. Ток возбуждения в генераторе независимого возбуждения при снятии внешней характеристики не изменяется, постоянна по величине и э. д. с. генератора.

У генератора параллельного возбуждения ток возбуждения

зависит отнапряжения машины , а так как напряжение машины
U
с увеличением нагрузки уменьшается, то снижается и вели­чина тока возбуждения, что приводит к большему изменению напря­жения по сравнению с генератором независимого возбуждения. С уве­личением нагрузки происходит размагничивание генератора, и поэ­тому в генераторе параллельного возбуждения ток нагрузки возра­стает только до определенного, критического значения тока
Iкр
, превышающего номинальный ток в 2—2,5 раза.

При достижении критического тока напряжение машины сразу понижается до нуля, ав обмотке якоря протекает незначительный по величине ток короткого замыкания, обусловленный э. д. с. остаточ­ного магнетизма.

Напряжение генератора параллельного возбуждения вначале изменяется незначительно, так как, пока сталь полюсов еще насыщена, влияние размагничивания машины сказывается мало. По мереувеличения тока нагрузки происходит уменьшение напряжения идальнейшее размагничивание машины, что приводит к более резкому понижению напряжения, а при достижении критического тока к бы­строму исчезновению («сбрасыванию») напряжения и нагрузки.

Ток короткого замыкания не опасен для генератора параллель­ного возбуждения, но критический ток может вызвать круговой огонь на коллекторе.

Генераторы параллельного возбуждения широкое приме­няются в сельскохозяйственных машинах (машинные возбудители синхронных гене­раторов, на автомобилях, тракторах и в зарядных агрегатах).

Классификация

Разделение генераторов по классам происходит по тому принципу, как они возбуждаются. Есть два основных типа классификации генераторов, это самовозбуждающиеся и генераторы с независимым возбуждением.

Первый класс это устройства, где обмотка питается непосредственно от якоря. Его можно подразделить на последовательно, параллельное и смешанное возбуждение. Второй класс подразделяется на электромагнитное и магнитоэлектрическое возбуждение.

Технические характеристики

Под основными техническими характеристиками генераторов можно понимать следующие величины. Это ЭДС генератора. Непосредственно с ЭДС любого генератора напрямую связана его полная электрическая мощность, которая ей прямопропорциональна.


Импульсная защита — классификация устройств, схемы подключения, особенности электромонтажных работ

Промежуточное реле — классификация, назначение, подключение и особенности срабатывания (Инструкция)

Подключение дифавтомата — схемы, правила монтажа и особенности установки своими руками. Пошаговая инструкция начинающего электрика!

Полная мощность возрастает при увеличении количества полюсов и частоты оборотов якоря. Полезная же мощность, передаваемая на подключённое внешнее устройство, равна произведению выходного тока на выходное напряжение.

Основная характеристика любого производящего что-либо устройства, в том числе и нашего генератора это КПД. Если генератор выключить, а потом включить, то его КПД будет уменьшаться, в связи с увеличением затрат энергии на нагрев обмотки. Различают электрический КПД и промышленный.

Если генератор работает на холостом ходу или загружен не полностью, то и КПД соответственно значительно уменьшается. Для того чтобы получить комфортный в экономическом плане режим работы генератора в сети, где нагрузка постоянно изменяется, подключают несколько генераторов, соединённых между собой параллельно.

При таком подключении, причём желательно через автомат и вольтметр, добиваются равномерного распределения нагрузки между работающими генераторами. При увеличении потребления внешней нагрузки, в работу включается второй генератор, тем самым регулируя обороты первого и выравнивая напряжение.

При использовании генераторов со смешанным возбуждением происходит автоматическая регулировка характеристик работающих вместе генераторов, повышается стабильность работы. Это возможно из-за того, что в таких генераторах есть уравнительный провод, проходящий между отрицательными или положительными щётками. Именно эта шина и делает работу таких генераторов устойчивой.


Реле времени: как подключить своими руками? Для чего используется и обзор уровней автоматизации. Виды, маркировка и принцип работы устройства

Понижающий трансформатор: принцип работы, особенности выбора, подключение и установка своими руками. ТОП-10 идей + инструкция!

Уравнение генераторов постоянного тока
Характеристики генераторов
Параллельная работа генераторов постоянного тока

Страница 3 из 5

УРАВНЕНИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Основные соотношения, характеризующие работу машины в качестве генератора, можно представить в виде приведенных ниже уравнений. Эти уравнения справедливы для всех генераторов независимо от способа их возбуждения.

Уравнение равновесия напряжения. Напряжение на выводах генератора U всегда меньше наводимой в обмотке якоря ЭДС Е на значение падения напряжения, т. е.

U = E IaΣra ΔUщ.(1)

Падение напряжения в цепи якоря состоит из двух составляющих: IaΣra падение напряжения в обмотках и ΔUщ. — падение напряжения в щеточном контакте. Сопротивление Σra включает в себя сопротивления обмотки якоря и всех последовательно соединенных с ней обмоток. В общем случае

Σra = ra + rд.+ rс + rк,(2)

где ra, rд, rс, rк сопротивления обмоток: якоря, дополнительных полюсов, последовательной и компенсационной.

В зависимости от конкретной схемы генератора часть сопротивлений в (2) будет отсутствовать.

Для приближенных расчетов уравнение (1) можно упростить:

U = E Ia Ra,(3)

где Ra=Σra+rщ. Переходное сопротивление щеточного контакта rщ приближенно принимается постоянным и равным

rщ = ΔUщ/ Ia, ном.

Ток якоря генератора Iaобусловлен ЭДС E и всегда имеет с ней одинаковое направление:

Ia = (E U)/Ra.(4)

Уравнение баланса мощностей. Это уравнение получим, если правую и левую части (1) умножим на ток Ia:

UIa = EIa. — I2aΣra — ΔUщIa.

Произведение E Ia=Pэм называется электромагнитной мощностью и представляет собой суммарную электрическую мощность, которая получается в результате преобразования механической мощности. Часть этой мощности расходуется в цепи якоря на электрические потери в обмотках (I2aΣra= Pэ,а) и в переходном сопротивлении щеточного контакта (ΔUщIa= Pэ,щ).

Остальная часть мощности, равная произведению UIa, является отдаваемой мощностью генератора. В генераторах независимого возбуждения эта мощность поступает во внешнюю сеть и представляет собой полезную мощность генератора P2:

P2 = UIa.(5)

В генераторах параллельного и смешанного возбуждения полезная мощность P2, отдаваемая в сеть, меньше на значение мощности, затрачиваемой на возбуждение:

P2 = UIa Pв.(6)

К генератору от двигателя, приводящего во вращение его якорь ,подводится механическая мощность P1. Большая часть этой мощности преобразуется в электромагнитную Pэм, а другая ее часть расходуется в генераторе на покрытие механических потерь Pмх(трение в подшипниках, вентиляцию), магнитных потерь в стали якоря Pм и добавочных потерь Pд:

P1 = Pэм + Pмх.+ Pм + Pд.(7)

Для генераторов независимого возбуждения мощность, затрачиваемая на возбуждение, поступает от постороннего источника, поэтому в левой части (7) следует принимать

P1 = Pэм + Pмх.+ Pм + Pд + Pв.

Отношение P2/P1=η представляет собой КПД генератора.

Рассмотренное преобразование мощности в генераторах постоянного тока для наглядности можно представить в виде энергетической диаграммы (рис. 2). Эта диаграмма построена для генератора параллельного возбуждения.

Уравнение равновесия моментов. Поделив правую и левую части уравнения (7) на угловую скорость якоря Ω=2πn/60, получим уравнение момента:

P1 = Pэм/Ω + (Pмх.+ Pм + Pд)/Ω,(8)
М1 = М + (Pмх.+ Pм + Pд)/Ω.

Электромагнитный момент М в генераторе направлен против вращения и равен М=cMIaФ. При увеличении тока Iaвозрастает электромагнитный момент и, следовательно, момент и мощность, поступаемая от приводного двигателя.

Фото генераторов постоянного тока

Читайте здесь! Статор электродвигателя — конструктивное устройство, принцип работы, проверка работоспособности и особенности ремонта

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.


источники:

http://electro-agregat.ru/interesno/eds-generatora.html

http://odinelectric.ru/equipment/kak-ustroen-generator-peremennogo-toka