Принцип суперпозиции основывается на решении уравнения

Принцип суперпозиции электрических полей

Одна из задач, которые ставит электростатика перед собой – это оценка параметров поля при заданном стационарном распределении зарядов в пространстве. И принцип суперпозиции является одним из вариантов решения такой задачи.

Принцип суперпозиции

Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.

Принцип суперпозиции:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух других точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона.

В случае, когда речь идет о множестве зарядов N (т.е. нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q , можно определить по формуле:

F → = ∑ i = 1 N F i a → ,

где F i a → является силой, с которой влияет на заряд q заряд q i , если прочий N — 1 заряд отсутствует.

При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды d q (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Полевая трактовка: напряженность поля двух точечных зарядов есть сумма напряженностей, создаваемым каждым из зарядов при отсутствии другого.

Для общих случаев принцип суперпозиции относительно напряженностей имеет следующую запись:

где E i → = 1 4 π ε 0 q i ε r i 3 r i → является напряженностью i -го точечного заряда, r i → — радиусом вектора, проложенного от i -го заряда в некоторую точку пространства. Указанная формула говорит нам о том, что напряженность поля любого числа точечных зарядов есть сумма напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Инженерная практика подтверждает соблюдение принципа суперпозиции даже для очень больших напряженностей полей.

Значимым размером напряженности обладают поля в атомах и ядрах (порядка 10 11 — 10 17 В м ), но и в этом случае применялся принцип суперпозиции для расчетов энергетических уровней. При этом наблюдалось совпадение результатов расчетов с данными экспериментов с большой точностью.

Все же следует также заметить, что в случае очень малых расстояний (порядка

10 — 15 м ) и экстремально сильных полей принцип суперпозиции, вероятно, не выполняется.

Например, на поверхности тяжелых ядер при напряженности порядка

10 22 В м принцип суперпозиции выполняется, а при напряженности 10 20 В м возникают квантово-механические нелинейности взаимодействия.

Когда распределение заряда является непрерывным (т.е. отсутствует необходимость учета дискретности), совокупная напряженность поля задается формулой:

В этой записи интегрирование проводится по области распределения зарядов:

  • при распределении зарядов по линии ( τ = d q d l — линейная плотность распределения заряда) интегрирование проводится по линии;
  • при распределении зарядов по поверхности ( σ = d q d S — поверхностная плотность распределения) интегрирование проводится по поверхности;
  • при объемном распределении заряда ( ρ = d q d V — объемная плотность распределения) интегрирование проводится по объему.

Принцип суперпозиции дает возможность находить E → для любой точки пространства при известном типе пространственного распределения заряда.

Примеры применения принципа суперпозиции

Заданы одинаковые точечные заряды q , расположенные в вершинах квадрата со стороной a . Необходимо определить, какая сила воздействует на каждый заряд со стороны других трех зарядов.

Решение

На рисунке 1 проиллюстрируем силы, влияющие на любой из заданных зарядов в вершинах квадрата. Поскольку условием задано, что заряды одинаковы, для иллюстрации возможно выбрать любой из них. Сделаем запись суммирующей силы, влияющей на заряд q 1 :

F → = F 12 → + F 14 → + F 13 → .

Силы F 12 → и F 14 → являются равными по модулю, определим их так:

F 13 → = k q 2 2 a 2 .

Теперь зададим направление оси О Х (рисунок 1 ), спроектируем уравнение F → = F 12 → + F 14 → + F 13 → , подставим в него полученные выше модули сил и тогда:

F = 2 k q 2 a 2 · 2 2 + k q 2 2 a 2 = k q 2 a 2 2 2 + 1 2 .

Ответ: сила, оказывающее воздействие на каждый из заданных зарядов, находящихся в вершинах квадрата, равна F = k q 2 a 2 2 2 + 1 2 .

Задан электрический заряд, распределенный равномерно вдоль тонкой нити (с линейной плотностью τ ). Необходимо записать выражение, определяющее напряженность поля на расстоянии a от конца нити вдоль ее продолжения. Длина нити – l .

Решение

Первым нашим шагом будет выделение на нити точечного заряда d q . Составим для него, в соответствии с законом Кулона, запись, выражающую напряженность электростатического поля:

d E → = k d q r 3 r → .

В заданной точке все векторы напряженности имеют одинаковую направленность вдоль оси ОХ, тогда:

d E x = k d q r 2 = d E .

Условием задачи дано, что заряд имеет равномерное распределение вдоль нити с заданной плотностью, и запишем следующее:

Подставим эту запись в записанное ранее выражение напряженности электростатического поля, проинтегрируем и получим:

E = k ∫ a l + a τ d r r 2 = k τ — 1 r a l + a = k τ l a ( l + a ) .

Ответ: напряженность поля в указанной точке будет определяться по формуле E = k τ l a ( l + a ) .

Принцип суперпозиции основывается на решении уравнения

Рассмотрим линейное дифференциальное уравнение n –го порядка

основан на следующих

1. Если y 1( x ) и y 2( x )— два решения линейного однородного дифференциального уравнения

то любая их линейная комбинация y ( x ) = C 1 y 1( x ) + C 2 y 2( x ) является решением этого однородного уравнения.

2. Если y 1( x ) и y 2( x ) — два решения линейного неоднородного уравнения L ( y ) = f ( x ) , то их разность y ( x ) = y 1( x ) − y 2 ( x ) является решением однородного уравнения L ( y ) = 0 .

Принцип суперпозиции сил и полей

теория по физике 🧲 электростатика

Принцип суперпозиции сил

Результирующая, или равнодействующая, сила равна векторной сумме всех сил, действующих на тело:

Fi— сила, с которой электрическое поле зарядом q действует на пробный заряд qi, помещенный в это поле на расстоянии riот этого заряда. Численно ее можно вычислить по формуле:

F i = k q i q r 2 i . .

Алгоритм решения задач на определение равнодействующей силы (точечный заряд находится в поле, созданном другими точечными зарядами):

  1. Сделать чертеж. Указать расположение всех зарядов и их знаки.
  2. Выделить заряд, для которого определяют равнодействующую.
  3. Пронумеровать остальные заряды.
  4. Определить расстояния от выделенного заряда до всех остальных.
  5. Построить все силы, действующие на интересующий нас заряд. При этом необходимо учитывать знаки зарядов, их модули и расстояния между зарядами.
  6. Найти геометрическую (векторную) сумму всех сил, действующих на выделенный заряд.
  7. Пользуясь формулами геометрии и законом Кулона, определить модуль равнодействующей.

Пример №1. Как направлена (вправо, влево, вверх, вниз) кулоновская сила − F K , действующая на положительный точечный электрический заряд +2q, помещенный в центр квадрата, в вершинах которого находятся заряды +q, +q, –q, –q?

Известно, что одноименные заряды отталкиваются, а разноименные – притягиваются. Из рисунка видно, что заряд +2q, находящийся в центре квадрата, будет отталкиваться от зарядов +q, находящихся справа, и будет притягиваться к зарядам –q, находящимся слева.

Сила Кулона обратно пропорциональна квадрату расстояния между зарядами, то есть с увеличением расстояния r убывает по квадратическому закону. Так как заряд +q находится точно в центре квадрата, то расстояния от зарядов +q, +q, -q, -q будут равны, следовательно, равна по модулю и сила Кулона, действующая на заряд +2q. Суперпозиция сил, действующих на заряд +2q:

Из рисунка видно, что кулоновская сила − F K , действующая на положительный точечный электрический заряд +2q, направлена влево.

Принцип суперпозиции полей

Если в некоторой точке пространства складываются электрические поля от нескольких зарядов, то результирующая напряженность находится как векторная сумма напряженностей отдельных полей:

− E i — напряженность, создаваемая зарядом q i в точке, находящейся на расстоянии r i :

− E i = k q i r 2 i . .

Векторное сложение напряженностей аналогично нахождению равнодействующей сил Кулона, только в интересующую нас точку пространства помещают положительный пробный заряд. Чтобы найти результирующий потенциал в точке, необходимо алгебраически сложить потенциалы всех полей. Нельзя забывать, что знак потенциала определяется знаком заряда, создающим электрическое поле:

φ i — потенциал электростатического поля, создаваемого зарядом q i на расстоянии r i от него. Численно он равен:

φ i = ± k q i r i . .

Для определения полной энергии надо сложить потенциальные энергии всех пар зарядов:

W i p — потенциальная энергия взаимодействия зарядов q i и q n , находящихся на расстоянии r i друг от друга. Численно она равна:

W i p = ± k q i q n r i . .

Примеры определения расстояний

Два заряда лежат на одной прямой на расстоянии l друг от друга. Изучаемый заряд лежит между ними:

r 1 = x ; r 2 = l − x

Изучаемый заряд лежит в вершине квадрата со стороной a:

r 1 = r 3 = a ; r 2 = a √ 2

Изучаемый заряд лежит в центре равностороннего треугольника со стороной a:

r 1 = r 2 = r 3 = a √ 3 . .

Изучаемый заряд лежит в вершине прямоугольника со сторонами a и b:

r 1 = b ; r 2 = √ a 2 + b 2 ; r 3 = a

Изучаемый заряд лежит в точке пересечения диагоналей ромба со стороной a. Угол при вершине ромба 120 о :

r 1 = r 3 = a √ 3 2 . . ; r 2 = r 4 = a 2 . .

Изучаемый заряд лежит в центре правильного шестиугольника со стороной a:

r 1 = r 2 = r 3 = r 4 = r 5 = r 6 = a

Пример №2. Маленький заряженный шарик массой m, имеющий заряд q, движется с высоты h по наклонной плоскости с углом наклона α. В вершине прямого угла, образованного высотой и горизонталью, находится неподвижный заряд Q. Какова скорость шарика у основания наклонной плоскости v, если его начальная скорость равна нулю? Трением пренебречь.

Применим закон сохранения энергии, согласно которому полная энергия шарика в точке А равна полной энергии шарика в точке В (трением пренебрегаем):

Полная энергия шарика с зарядом qв точке А равна сумме его механической потенциальной энергии и потенциальной энергии взаимодействия с зарядом Q:

E A = m g h + k q Q h . .

В точке В механическая потенциальная энергия шарика равна нулю, но в этой точке максимальная его кинетическая энергия. Полная энергия шарика в точке В равна:

E B = m v 2 2 . . + k q Q b . .

Расстояние между точкой В и местом, где находится заряд Q:

Приравняем правые части уравнений:

m g h + k q Q h . . = m v 2 2 . . + k q Q b . .

m g h + k q Q h . . = m v 2 2 . . + k q Q tan . α h . .

m v 2 2 . . = m g h + k q Q h . . − k q Q tan . α h . . = m g h + k q Q h . . ( 1 − tan . α )

v =   .  ⎷ 2 ( m g h + k q Q h . . ( 1 − tan . α ) ) m . . = √ 2 g h + 2 k Q m h . . ( 1 − tan . α )

Точка В находится в середине отрезка АС. Неподвижные точечные заряды + q и −2q расположены в точках А и С соответственно (см. рисунок). Какой заряд надо поместить в точку С взамен заряда −2q, чтобы напряжённость электрического поля в точке В увеличилась в 2 раза?


источники:

http://twt.mpei.ac.ru/math/ODE/ODElin/ODElin_06020000.html

http://spadilo.ru/princip-superpozicii-sil-i-polej/