Приведение дифференциального уравнения второго порядка

Дифференциальные уравнения, приводимые к уравнениям первого порядка

Вы будете перенаправлены на Автор24

Дифференциальные уравнения второго порядка, в которых правая часть не зависит от неизвестной функции и её производной

Таким дифференциальным уравнением второго порядка является уравнение вида $y»=f\left(x\right)$. В нем правая часть не зависит от неизвестной функции $y$ и её производной $y’$, а зависит только от $x$. Решается это уравнение последовательным интегрированием.

Представим его в таком виде: $\frac \left(y’\right)=f\left(x\right)$, откуда $d\left(y’\right)=f\left(x\right)\cdot dx$.

Интегрируем первый раз, используя то свойство, что неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной: $\int d\left(y’\right) =\int f\left(x\right)\cdot dx $ или $y’=\int f\left(x\right)\cdot dx +C_ <1>$, где $C_ <1>$ — произвольная постоянная.

Таким образом, дифференциальное уравнение второго порядка сведено теперь к дифференциальному уравнению первого порядка, которое можно представить в таком виде: $dy=\left(\int f\left(x\right)\cdot dx +C_ <1>\right)\cdot dx$.

Интегрируем полученное дифференциальное уравнение повторно: $y=\int \left(\int f\left(x\right)\cdot dx +C_ <1>\right)\cdot dx =\int \left(\int f\left(x\right)\cdot dx \right)\cdot dx +\int C_ <1>\cdot dx$. Окончательно получаем:$y=\int \left(\int f\left(x\right)\cdot dx \right)\cdot dx +C_ <1>\cdot x+C_ <2>$, где $C_ <2>$ — произвольная постоянная.

Процесс интегрирования завершен. Получена неизвестная функция $y$, которая является общим решением данного дифференциального уравнения второго порядка.

Алгоритм решения дифференциального уравнения второго порядка $y»=f\left(x\right)$ может быть представлен в следующем виде:

  1. находим интеграл $I_ <1>\left(x\right)=\int f\left(x\right)\cdot dx $ и записываем первую производную искомой функции в виде $y’\left(x,C_ <1>\right)=I_ <1>\left(x\right)+C_ <1>$;
  2. находим интеграл $I_ <2>\left(x\right)=\int I_ <1>\left(x\right)\cdot dx $ и записываем окончательно общее решение данного дифференциального уравнения: $y=I_ <2>\left(x\right)+C_ <1>\cdot x+C_ <2>$;
  3. для поиска частного решения начальные условия подставляем в выражение для первой производной $y’$, а также в общее решение; в результате находим значения произвольных постоянных $C_ <1>$ и $C_ <2>$.

Готовые работы на аналогичную тему

Найти общее решение дифференциального уравнения второго порядка $y»=4$. Записать также его частное решение, которое удовлетворяет начальным условиям $y=1$ при $x=1$, $y’=1$ при $x=1$.

В данном дифференциальном уравнении правая часть не зависит ни от неизвестной функции $y$, ни от её производной $y’$. Следовательно, оно решается последовательным интегрированием два раза подряд.

Находим интеграл $I_ <1>\left(x\right)=\int f\left(x\right)\cdot dx =\int 4\cdot dx =4\cdot x$. Записываем выражение для первой производной в виде $y’\left(x,C_ <1>\right)=I_ <1>\left(x\right)+C_ <1>$, то есть $y’=4\cdot x+C_ <1>$.

Находим интеграл $I_ <2>\left(x\right)=\int I_ <1>\left(x\right)\cdot dx =\int 4\cdot x\cdot dx =2\cdot x^ <2>$. Записываем окончательно общее решение в виде $y=I_ <2>\left(x\right)+C_ <1>\cdot x+C_ <2>$. Получаем: $y=2\cdot x^ <2>+C_ <1>\cdot x+C_ <2>$.

Ищем частное решение. Подставляем начальное условие $y’=1$ при $x=1$ в выражение для $y’$: $1=4\cdot 1+C_ <1>$, откуда $C_ <1>=-3$. Подставляем начальное условие $y=1$ при $x=1$ в выражение для $y$: $1=2\cdot 1^ <2>+\left(-3\right)\cdot 1+C_ <2>$, откуда $C_ <2>=2$. Таким образом, частное решение имеет вид: $y=2\cdot x^ <2>-3\cdot x+2$.

Дифференциальные уравнения второго порядка, не содержащие неизвестной функции

Указанные дифференциальные уравнения второго порядка допускают понижение порядка посредством замены переменных. После этого к полученным дифференциальным уравнениям первого порядка могут быть применены известные методы решения.

Дифференциальное уравнение второго порядка, не содержащее неизвестной функции $y$, имеет вид $y»=f\left(x,y’\right)$.

Для его решения применяют замену $y’=z\left(x\right)$.

При этом $y»=z’\left(x\right)$. После подстановки данное дифференциальное уравнение приобретает вид дифференциального уравнения первого порядка относительно $z$, то есть $z’=f\left(x,z\right)$. Решая его, находим $z\left(x\right)=\phi \left(x,C_ <1>\right)$.

В свою очередь, поскольку $y’=z\left(x\right)$, то $y’=\phi \left(x,C_ <1>\right)$. Это также дифференциальное уравнение первого порядка, которое допускает непосредственное интегрирование. Следовательно, интегрируя еще раз, окончательно получаем общее решение $y=\int \phi \left(x,C_ <1>\right)\cdot dx +C_ <2>$.

Алгоритм решения дифференциального уравнения второго порядка $y»=f\left(x,y’\right)$ может быть представлен в следующем виде:

  1. переписываем данное дифференциальное уравнение в виде дифференциального уравнения первого порядка относительно переменной $z$, формально заменив $y»$ на $z’$, а $y’$ — на $z$;
  2. полученное дифференциальное уравнение первого порядка решаем одним из подходящих известных методов;
  3. найденное решение $z=\phi \left(x,C_ <1>\right)$ представляем в виде дифференциального уравнения первого порядка $y’=\phi \left(x,C_ <1>\right)$, которое допускает непосредственное интегрирование;
  4. находим интеграл $I=\int \phi \left(x,C_ <1>\right)\cdot dx $ и получаем общее решение в виде $y=I+C_ <2>$.

Найти общее решение дифференциального уравнения$y»-\frac =3\cdot x$.

Данное дифференциальное уравнение не содержит неизвестной функции $y$, поэтому переписываем его в виде дифференциального уравнения первого порядка относительно переменной $z$, формально заменив $y»$ на $z’$, а $y’$ — на $z$. Получаем: $z’-\frac =3\cdot x$.

Это дифференциальное уравнение первого порядка является линейным неоднородным, решая которое известным методом, получаем $z=\left(3\cdot x+C_ <1>\right)\cdot x$.

Найденное решение представляем в виде дифференциального уравнения первого порядка $y’=\phi \left(x,C_ <1>\right)$, то есть $y’=\left(3\cdot x+C_ <1>\right)\cdot x$. Это дифференциальное уравнение допускает непосредственное интегрирование.

Находим интеграл $I=\int \phi \left(x,C_ <1>\right)\cdot dx =\int \left(3\cdot x+C_ <1>\right)\cdot x\cdot dx =x^ <3>+C_ <1>\cdot \frac > <2>$ и получаем общее решение в виде $y=I+C_ <2>=x^ <3>+C_ <1>\cdot \frac > <2>+C_ <2>$. Это общее решение можно представить также в виде $y=x^ <3>+C_ <1>\cdot x^ <2>+C_ <2>$.

Дифференциальные уравнения второго порядка, не содержащие независимой переменной

Указанные дифференциальные уравнения второго порядка также допускают понижение порядка посредством замены переменных. После этого к полученным дифференциальным уравнениям первого порядка могут быть применены известные методы решения.

Дифференциальное уравнение второго порядка, не содержащее независимой переменной $x$, имеет вид $y»=f\left(y,y’\right)$.

Для его решения применяют замену $y’=z\left(y\right)$.

Подставляем выражения для $y’$ и $y»$ в данное дифференциальное уравнение: $z\cdot \frac =f\left(y,z\right)$. Получили дифференциальное уравнение первого порядка относительно переменной $z$, которая является функцией $y$. Решая его, находим $z\left(y\right)=\phi \left(y,C_ <1>\right)$.

В свою очередь, поскольку $\frac =z\left(y\right)$, то $\frac =\phi \left(y,C_ <1>\right)$. Полученное дифференциальное уравнение представляет собой дифференциальное уравнение первого порядка с разделяющимися переменными, общее решение которого можно найти из выражения $\int \frac <\phi \left(y,C_<1>\right)> =x+C_ <2>$.

Алгоритм решения дифференциального уравнения второго порядка $y»=f\left(y,y’\right)$ может быть представлен в следующем виде:

  1. переписываем данное дифференциальное уравнение в виде дифференциального уравнения первого порядка относительно переменной $z$, формально заменив $y»$ на $z\cdot z’$, а $y’$ — на $z$;
  2. полученное дифференциальное уравнение первого порядка решаем одним из подходящих известных методов;
  3. найденное решение $z=\phi \left(y,C_ <1>\right)$ представляем в виде дифференциального уравнения первого порядка $\frac=\phi \left(y,C_ <1>\right)$, которое является дифференциальным уравнением с разделяющимися переменными;
  4. находим интеграл $I=\int \frac<\phi \left(y,C_<1>\right)> $ и получаем общее решение в виде $I=x+C_ <2>$.

Линейные дифференциальные уравнения второго порядка

Данная статья раскрывает смысл нахождения и алгоритм для общего решения линейных однородных и неоднородных дифференциальных уравнений второго порядка с подробным просмотром их решений.

Линейное однородное уравнение второго порядка имеет вид y » + p ( x ) · y ‘ + q ( x ) · y = 0 , неоднородное — y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) . F ( x ) , p ( x ) и q ( x ) являются функциями, которые непрерывны из интервала интегрирования x . Частным случаем принято считать p ( x ) = p и q ( x ) = q , то есть при наличии постоянных в записи функции.

Нахождение общего решения линейных дифференциальных уравнений

Общее решение y 0 для линейного однородного дифференциального уравнения (ЛОДУ) вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = 0 из интервала x при наличии постоянных коэффициентов f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) , располагаемых на x , считают линейную комбинацию n линейно независимых частных решений ЛОДУ y j , j = 1 , 2 , . . . , n , где имеются произвольные коэффициенты C j , j = 1 , 2 , . . . , n , то есть y 0 = ∑ j = 1 n C j · y j .

Общим решением y для линейного неоднородного дифференциального уравнения вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = f ( x ) из интервала x при наличии коэффициентов f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) и функции f ( x ) является сумма вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = 0 , где y

считается одним из общих решений ЛНДУ.

Отсюда следует, что

  • выражение y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 считается общим решением дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 , а y 1 и y 2 считаются линейно независимыми частными решениями;
  • y = y 0 + y

обозначают в качестве общего решения уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) , где y

принимает одно из любых частных решений, y 0 соответствует общему решению ЛОДУ.

После чего необходимо находить y 1 , y 2 и y

Если функции простые, то применяется метод подбора.

Линейно независимые функции y 1 и y 2 находятся из

1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 · x , e k 2 · x , . . . , e k n · x 3 ) e k 1 · x , x · e k 1 · x , . . . , x n 1 · e k 1 · x , e k 2 · x , x · e k 2 · x , . . . , x n 2 · e k 2 · x , . . . e k p · x , x · e k p · x , . . . , x n p · e k p · x .

Линейную независимость проверяют определителем Вронского вида W ( x ) = y 1 ( x ) y 2 ( x ) y 1 ‘ ( x ) y 2 ‘ ( x ) . Когда функции располагаются на интервале х , тогда такой определитель не равен 0 на заданном промежутке.

Когда имеются функции вида y 1 = 1 и y 2 = x , где x принадлежит множеству действительных чисел, то W ( x ) = 1 x 1 ‘ x ‘ = 1 x 0 1 = 1 ≠ 0 ∀ x ∈ R .

Функции вида y 1 = sin x и y 2 = cos x считаются линейно независимы на области действительных чисел, потому как W ( x ) = sin x cos x ( sin x ) ‘ ( cos x ) ‘ = sin x cos x cos x — sin x = = — sin 2 x — cos 2 x = — 1 ≠ 0 ∀ x ∈ R

Функции y 1 = — x — 1 и y 2 = x + 1 считаются линейно независимыми из интервала ( — ∞ ; + ∞ )

W ( x ) = — x — 1 x + 1 — x — 1 ‘ ( x + 1 ) ‘ = — x — 1 x + 1 — 1 1 = = — x — 1 + x + 1 = 0 ∀ x ∈ R

Не всегда можно подобрать y 1 , y 2 , y

. Поэтому следует использовать другой метод. При наличии ненулевого частного решения y 1 ЛОДУ второго порядка y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) , тогда общее решение находится понижением степени и подстановкой y = y 1 · ∫ u ( x ) d x .

Найти общее решение уравнение вида y » — y ‘ + y x = 0 .

Решение

Частное решение записывается как y 1 = x для дифференциального уравнения y » — y ‘ + y x = 0 , когда x не равен 0 . Необходимо перейти к понижению степени при помощи постановки. Тогда получим уравнение вида y = y 1 · ∫ u ( x ) d x = x · ∫ u ( x ) d x , а итоговое значение примет вид интеграла ∫ u ( x ) d x = y x .

По правилу дифференцирования произведения и свойству неопределенного интеграла получаем выражение вида

y ‘ = x · ∫ u ( x ) d x ‘ = x ‘ · ∫ u ( x ) d x + x · ∫ u ( x ) d x ‘ = = ∫ u ( x ) d x + x · u ( x ) = y x + x · u ( x ) y » = ∫ u ( x ) d x + x · u ( x ) ‘ = ∫ u ( x ) d x ‘ + x ‘ · u ( x ) + x · u ‘ ( x ) = = 2 u ( x ) + x · u ‘ ( x )

Производим подстановку в исходное выражение. Запишем равенство вида:

y » — y ‘ + y x = 0 ⇔ 2 u + x · u ‘ — y x — x · u + y x = 0 ⇔ 2 u + x · u ‘ — x · u = 0 ⇔ x · d u d x + u · — x + 2 = 0 ⇔ d u u = 1 — 2 x d x , u = 0

Интегрируем обе части выражения и получаем, что ln u + C 1 = x — 2 ln x + C 2 ⇔ ln u = x + ln 1 x 2 + C 2 — C 1 . Переходим к записи общего вида выражения. Тогда она примет вид u = C · e x x 2 с C являющейся произвольной постоянной.

Ответ: из выражения y = x · ∫ u d x очевидно, что общее решение заданного ЛОДУ примет вид y = x · C · ∫ e x x 2 d x = x · C · ( F ( x ) + C 3 ) , когда F ( x ) считается одной из первообразных функции e x x 2 .

Для решения неоднородного дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) нужно подбирать y

, если возможно найти y 1 и y 2 . Поиск общего решения производится при помощи метода вариации произвольных постоянных.

В таком случаем ЛОДУ принимает вид y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 . Преобразовывая произвольные постоянные для общего решения, ЛНДУ принимает вид y 0 = C 1 ( x ) ⋅ y 1 + C 2 ( x ) ⋅ y 2 , где производные неизвестных функций C 1 ( x ) и C 2 ( x ) можно определить из системы вида C 1 ‘ ( x ) · y 1 + C 2 ‘ ( x ) · y 2 = 0 C 1 ‘ ( x ) · y 1 ‘ + C 2 ‘ ( x ) · y 2 ‘ = f ( x ) , а получение самих функций производится путем интегрирования.

Найти общее решение уравнения y » — y = 2 x .

Решение

Для решения необходимо обратить внимание на его частные решения. Для ЛОДУ y » — y = 0 они являются y 1 = e — x и y 2 = e x , то есть выражение вида y 0 = C 1 · e — x + C 2 · e x . Изменяя постоянные, общее решение получит вид

y = C 1 ( x ) · e — x + C 2 ( x ) · e x .

Необходимо составить систему линейных уравнений и решить

C 1 ‘ ( x ) · y 1 + C 2 ‘ ( x ) · y 2 = 0 C 1 ‘ ( x ) · y 1 ‘ + C 2 ‘ ( x ) · y 2 ‘ = f ( x ) ⇔ C 1 ‘ ( x ) · e — x + C 2 ‘ ( x ) · e x = 0 — C 1 ‘ ( x ) · e — x + C 2 ‘ ( x ) · e x = 2 x

Чтобы разрешить ее, следует применить метод Крамера. Тогда

∆ = e — x e x — e — x e x = e — x · e x + e — x · e x = 2 ∆ C 1 ‘ ( x ) = 0 e x 2 x e x = — ( 2 e ) x ⇒ C 1 ‘ ( x ) = ∆ C 1 ‘ ( x ) ∆ = — 1 2 · 2 e x ∆ C 2 ‘ ( x ) = e — x 0 — e — x 2 x = 2 e x ⇒ C 2 ‘ = ∆ C 2 ‘ ( x ) ∆ = 1 2 · 2 e x

После интегрирования полученных выражений для того, чтобы найти C 1 ( x ) и C 2 ( x ) , запишем, что

C 1 ( x ) = — 1 2 · ∫ ( 2 e ) x d x = — 1 2 · ( 2 e ) x ln ( 2 e ) + C 3 = = — 1 2 · ( 2 e ) x ln 2 + 1 + C 3 C 2 ( x ) = 1 2 · ∫ 2 e x d x = 1 2 · 1 ln 2 e · 2 e x + C 4 = = 1 2 · 1 ln 2 — 1 · 2 e x + C 4

Ответ: общим решением для заданного уравнения получим уравнение вида

y = — 1 2 · ( 2 e ) x ln 2 + 1 + C 3 · e — x + 1 2 · 1 ln 2 — 1 · 2 e x + C 4 · e x .

Итоги

  • Поиск общего решения ЛОДУ 2 порядка y » + p ( x ) · y ‘ + q ( x ) · y = 0 выполняется из y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 считаются линейно независимыми частными решениями. Для подбора частных решений y 1 и y 2 чаще всего начинается с нахождения общего дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 . Когда подбор невозможен, тогда производится снижение порядка с помощью замены y = y 1 · ∫ u ( x ) d x , причем его решение приведет к общему виду ЛОДУ второго прядка.
  • Поиск общего решения ЛНДУ 2 порядка вида y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) производится с помощью y = y 0 + y

является любым частным решением, а y 0 считают в качестве общего решения ЛОДУ. Нахождение y 0 , то есть общего дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 , производится первоначально. После чего производится подбор y

. Если необходимо, то в начале производится подбор y 1 и y 2 для определения общего решения ЛНДУ с помощью применения метода вариации произвольных постоянных.

Приведение к каноническому виду линейных уравнений с частными производными второго порядка

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт математики, экономики и информатики

Кафедра дифференциальных и интегральных уравнений

ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА

Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………

1.1. Необходимый теоретический материал………………………..

1.2. Пример выполнения задачи1 (приведение к

каноническому виду уравнений гиперболического типа) .

1.3. Пример выполнения задачи 2 (приведение к

каноническому виду уравнений параболического типа)

1.4. Пример выполнения задачи 3 (приведение к

каноническому виду уравнений эллиптического типа) ..

1.5. Задачи для самостоятельного решения ………………….….

Упрощение группы младших производных

для уравнений второго порядка с постоянными коэффициентами

2.1. Необходимый теоретический материал …………………..

2.2. Пример выполнения задачи 4

2.3. Задачи для самостоятельного решения ……………………..

В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.

Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.

§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.

Задача. Определить тип уравнения

(1)

и привести его к каноническому виду.

1.1. Необходимый теоретический материал.

I. Тип уравнения (1) определяется знаком выражения :

· если в некоторой точке, то уравнение (1) называется уравнением гиперболического типа в этой точке;

· если в некоторой точке, то уравнение (1) называется уравнением эллиптического типа в этой точке;

· если в некоторой точке, то уравнение (1) называется уравнением параболического типа в этой точке.

Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.

Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение является уравнением эллиптического типа в точках ; параболического типа в точках ; и гиперболического типа в точках .

II. Чтобы привести уравнение к канонического виду, необходимо:

1. Определить коэффициенты ;

2. Вычислить выражение ;

3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения );

4. Записать уравнение характеристик:

; (2)

5. Решить уравнение (2). Для этого:

а) разрешить уравнение (2) как квадратное уравнение относительно dy:

; (3)

б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):

· (4)

в случае уравнения гиперболического типа;

· , (5)

в случае уравнения параболического типа;

· , (6)

в случае уравнения эллиптического типа.

6. Ввести новые (характеристические) переменные и :

· в случае уравнения гиперболического типа в качестве и берут общие интегралы (4) уравнений (3), т. е.

· в случае уравнения параболического типа в качестве берут общий интеграл (5) уравнения (3), т. е. , в качестве берут произвольную, дважды дифференцируемую функцию , не выражающуюся через , т. е. ;

· в случае уравнения эллиптического типа в качестве и берут вещественную и мнимую часть любого из общих интегралов (6) уравнений (3):

7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:

,

,

, (7)

,

.

8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:

· в случае уравнения гиперболического типа:

;

· в случае уравнения параболического типа:

;

· в случае уравнения эллиптического типа:

.

1.2. Пример выполнения задачи 1.

Определить тип уравнения

и привести его к каноническому виду.

1. Определим коэффициенты :

2. Вычислим выражение :

.

3. уравнение гиперболического типа во всей плоскости XOY.

4. Запишем уравнение характеристик:

. (9)

5. Решим уравнение (9). Для этого:

а) разрешаем уравнение (9) как квадратное уравнение относительно dy: ;

;

(10)

б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):

6. Введём характеристические переменные:

7. Пересчитаем производные, входящие в исходное уравнение.

Используя формулы (7), получим:

Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.

8. Собирая подобные слагаемые, получим:

Или после деления на -100 (коэффициент при ):

Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид

где

1.3. Пример выполнения задачи 2.

Определить тип уравнения

и привести его к каноническому виду.

1. Определим коэффициенты . В нашем примере они постоянны:

2. Вычислим выражение :

.

3. уравнение параболического типа во всей плоскости XOY.

4. Запишем уравнение характеристик:

. (12)

5. Решим уравнение (12). Для этого:

а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:

;

(13)

б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):

6. Введём характеристические переменные: одну из переменных вводим как и ранее

а в качестве берут произвольную, дважды дифференцируемую функцию, не выражающуюся через , пусть

;

7. Пересчитаем производные, входящие в исходное уравнение.

Используя формулы (7), получим:

Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.

8. Собирая подобные слагаемые, получим:

Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.

После деления на 25 (коэффициент при ):

Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид

где

1.4. Пример выполнения задачи 3.

Определить тип уравнения

(14)

и привести его к каноническому виду.

1. Определим коэффициенты :

2. Вычислим выражение :

.

3. уравнение эллиптического типа во всей плоскости XOY.

4. Запишем уравнение характеристик:

. (15)

5. Решим уравнение (15). Для этого:

а) разрешаем уравнение (15) как квадратное уравнение относительно dy: ; (16)

б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)

(17)

6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):

7. Пересчитаем производные, входящие в исходное уравнение.

Используя формулы (7), получим:

Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.

8. Собирая подобные слагаемые, получим:

Или после деления на 4 (коэффициент при и ):

Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид

где

1.5. Задачи для самостоятельного решения.

Определить тип уравнения и привести его к каноническому виду.

.

.

.

.

.

.

.

.

.

.

Определить тип уравнения и привести его к каноническому виду.

Определить тип уравнения и привести его к каноническому виду.

§2. Упрощение группы младших производных

для уравнений второго порядка с постоянными коэффициентами

2. 1. Необходимый теоретический материал

В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид

(1)

Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов

· в случае уравнения гиперболического типа:

; (11)

· в случае уравнения параболического типа:

; (12)

· в случае уравнения эллиптического типа:

. (13)

Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции

, (14)

где — новая неизвестная функция, — параметры, подлежащие определению. Такая замена не «испортит» канонического вида, но при этом позволит подобрать параметры так, чтобы из трех слагаемых группы младших производных в уравнении осталось только одно. Уравнения гиперболического, параболического и эллиптического типов соответственно примут вид

;

;

.

Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам

(15)

Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).

Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим

. (16)

В уравнении (16) приравняем к нулю коэффициенты при и

Откуда Подставив эти значения параметров в уравнение (16) и разделив его на , придем к уравнению

,

где .

2.2. Пример выполнения задачи 4

к каноническому виду и упростить группу младших производных.

9. Определим коэффициенты :

10. Вычислим выражение :

.

11. уравнение эллиптического типа во всей плоскости XOY.

12. Запишем уравнение характеристик:

. (18)

5. Решим уравнение (18). Для этого:

а) разрешаем уравнение (18) как квадратное уравнение относительно dy: ;

; (19)

б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):

6. Введём характеристические переменные:

13. Пересчитаем производные, входящие в исходное уравнение.

Используя формулы (7), получим:

Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.

14. Собирая подобные слагаемые, получим:

(20)

Теперь с помощью замены неизвестной функции (14)

упростим группу младших производных.

Пересчитаем производные, входящие в уравнение (20), используя формулы (15).

Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим

. (21)

В уравнении (21) приравняем к нулю коэффициенты при и

Откуда Подставив эти значения параметров в уравнение (21) и разделив его на , придем к уравнению

.

Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид

,

где .

2.3. Задачи для самостоятельного решения

Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.

.

.

.

.

.

.

.

.

.

.


источники:

http://zaochnik.com/spravochnik/matematika/delimost/linejnye-differentsialnye-uravnenija-vtorogo-porja/

http://pandia.ru/text/80/113/36843.php