Приведенное уравнение состояния газа ван дер ваальса

Реальные газы. Уравнение Ван-дер-Ваальса. Критическое состояние.

Реальным называется газ, между молекулами которого действуют силы межмолекулярного взаимодействия, состоящие из сил притяжения и сил отталкивания.

Для получения уравнения состояния реального газа необходимо учесть собственный объем молекул и энергию взаимодействия молекул на расстоянии. Наличие собственного объема молекул приводит к уменьшению объема, предоставленного молекулам, на некоторую величину. Силы притяжения между молекулами газа вызывают уменьшение давления молекул газа на стенки сосуда на некоторую величину рi.

Это уравнение может получено путем соответствующего изменения уравнения Менделеева-Клапейрона путем внесения в него поправок.

Уравнение состояния реального газа (уравнение Ван-дер-Ваальса) для одного моля имеет вид:

,

где р — давление, оказываемое на стенки сосуда, VМ – объем одного моля газа, а и b — постоянные Ван-дер-Ваальса, имеющие для разных газов различные значения, определяемые опытным путем. Поправка – внутреннее давление, обусловленное силами взаимного притяжения между молекулами. Поправка b характеризует ту часть объем, которая недоступна для движения молекул. Она равна учетверенному собственному объему молекул, содержащихся в моле газа:

b= NA.

Уравнение Ван-дер-Ваальса для произвольной массы газа имеет вид:

Уравнение Ван-дер-Ваальса позволяет построить теоретические изотермы реального газа и сравнить их с изотермами идеального газа и экспериментальными изотермами реального газа.

Уравнение Ван-дер-Ваальса после нескольких преобразований можно записать в виде:

.

Это уравнение третьей степени относительно V. Кубическое уравнение может иметь либо три вещественных корня, либо один вещественный и два мнимых.

Первому случаю соответствуют изотермы при низких температурах – кривые для Т1 и Т2 (рис.9.1.) Второму случаю изотермы при высоких температурах (одно значение объема V отвечает одному значению давления р), то есть любая изотерма начиная от изотермы для Тк.

Совпадение изотерм идеального и реального газа наблюдается при малых давлениях и больших объемах (так как при этих условиях газ можно считать идеальным). Для семейства изотерм Ван-дер-Ваальса характерно так называемой критической изотермы (при температуре Тк) имеющий точку перегиба при некотором давлении рк и объеме Vк; при Т>Тк все изотермы идут монотонно, при Т

Уравнение Ван-дер-Ваальса описывает не только свойства газов и паров, но и жидкостей. Анализ изотерм реального газа показывает, что превращение реального газа в жидкость возможно только при температурах, меньших критической, и при соответствующих давлениях.

Дата добавления: 2015-04-01 ; просмотров: 18490 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Приведенное уравнение Ван-дер-Ваальса. Закон соответственных состояний

Изотермы, построенные при одной и той же температуре для разных газов, выглядят по-разному, потому что и и связанные с ними критические величины различные для разных газов. Можно, однако, и для неидеальных газов написать уравнение изотермы, чтобы оно не зависело от природы газа, т.е. было бы универсальным. Для этого оказывается достаточно, чтобы параметры состояния газа находились в одинаковых отношениях к соответствующим критическим параметрам. Для этого введем безразмерные параметры, обезразмеренные с помощью критических величин, т.е.

.

Параметры называют приведенными параметрами. Поставим в уравнение Ван-дер-Ваальса значения параметров , вырожденные через приведенные параметры. Получим:

. (5.12)

В (5.12) подставим значения . Тогда получим:

. (5.13)

С учетом известных соотношений

. (5.14)

Уравнение (5.14) является приведенным уравнением состояния. В этом уравнении не содержатся константы, характерные для конкретного вещества. Из него следует, что если вещества обладают двумя одинаковыми приведенными параметрами из трех, то и третий параметр тоже одинаков для этих веществ. Этот закон носит название закона соответственных состояний. Он выражает тот факт, что изменяя масштаб, которым измеряются две из трех величин, характеризующих состояние веществ, т.е. используя приведенные параметры, можно совместить изотермы всех веществ.

Сжижение газов

Как следует из анализа изотерм Ван-дер-Ваальса, всякий газ может быть переведен в жидкое состояние путем сжатия, если его температура ниже критической температуры. Например, углекислый газ можно превратить в жидкость при комнатной температуре, поскольку его критическая температура равна 31,1 0 С. Но есть такие газы, которые при комнатной температуре нельзя перевести в жидкое состояние как бы его не сжали. К таким газам относятся, например, воздух, водород, гелий, кислород, у которых критические температуры значительно ниже комнатной. До открытия критической температуры (1822г.) их считали непослушными газами, т.е. газами, не способными сжижаться.

Для сжижения таких газов их необходимо охладить до температуры несколько ниже критической, после чего повышением давления газ может быть переведен в жидкое состояние. Сжиженный таким образом газы удобно хранить под атмосферным давлением (в открытом сосуде), но в этом случае их температура должна быть еще более низкой, чтобы давление соответствующее насыщенному пару, т.е. горизонтальному участку изотермы, было равно 1 атм. Для азота такая изотерма соответствует температуре -195,8 0 С, в то время как критическая температура азота равна -147,1 0 С.

Таким образом, чтобы газ сжижать, необходимо его достаточно сильно охладить. Для достижения такого сильного охлаждения используются два метода. Первый из них связан с использованием так называемого эффекта Джоуля-Томсона.

Эффект Джоуля-Томсона

Для наблюдения этого эффекта газ при достаточно большом давлении вынуждают протекать через пористую теплоизолированную перегородку. Это означает, что проток происходит адиабатно.

Гидродинамическое сопротивление перегородки приводит к тому, что на ней теряется, часть давления и газ выходит из перегородка при более низком давлении. Это означает, что газ расширяется или же дросселируется. Для того, чтобы течение газа было стационарным, т.е. происходило при постоянных значениях давлений, по обе стороны перегородки необходим какой-либо насос (компрессор), который поддерживал бы постоянным эти давления. Этот насос производит внешнюю работу сжатия газа, которая расходуется на преодоление сопротивления дросселя.

Покажем, что для неидеального газа процесс Джоуля-Томсона сопровождается изменением температуры, причем, такое же расширение идеального газа не вызывает никакого изменения температуры.

Явление изменения температуры газа при его адиабатном расширении дросселированием от одного постоянного давления к другому называется эффектом Джоуля-Томсона. Изменение температуры неидеального газа в процессе Джоуля-Томсона объясняется тем, что при расширении газа увеличивается расстояние между молекулами и совершается внутренняя работа против сил взаимодействия между молекулами. За счет этой работы изменяется кинетическая энергия молекул, а, следовательно, и температура.

Количественно эффект Джоуля-Томсона характеризуется дифференциальным коэффициентом Джоуля-Томсона , который определяется отношением изменения температуры газа к вызвавшему его изменению давления :

.

Для вычисления этого коэффициента детально проанализируем этот процесс с помощью следующей схемы.

Пусть 1 моль газа занимает объем между перегородкой и поршнем (рис.7), а после прохождения через перегородку — объем между перегородкой и поршнем . Поскольку при сжатии газа давление остается постоянным внешняя работа . Газ, переходя через перегородку, расширяется и совершает работу . Общая работа расширения газа

.

Так как процесс Джоуля-Томсона является адиабатическим . Согласно первому закону термодинамики, работа должна равняться изменению внутренней энергии, т.е.

,

где и — внутренняя энергия моля газа до и после расширения. Это выражение можно переписать следующим образом:

.

Термодинамический потенциал мы назвали энтальпией. Таким образом, процесс Джоуля-Томсона происходит так, что энтальпия остается постоянной по обе стороны перегородки, т.е.

.

Для идеального газа и зависят только от температуры, поэтому и энтальпия зависит только от температуры. Равенство энтальпий по обе стороны перегородки означает и равенство температур. Значит, для идеального газа коэффициент Джоуля-Томсона равен нулю. Для неидеального газа внутренняя энергия зависит не только от температуры, но и от объема , занимаемого газом. Кроме того, зависит от объема. Поэтому в случае неидеального газа равенство энтальпий по стороне перегородки не означает равенство температур.

Действительно, опыт показывает, что большинство газов, такие как азот, кислород, углекислота в процессе дросселирования при комнатной температуре охлаждаются. Но такие газы как водород, гелий при тех же условиях нагреваются.

Отметим, что процесс Джоуля-Томсона необратимый, следовательно, он сопровождается увеличением энтропии .

Выражение для дифференциала энтальпии, как было показано выше, имеет вид

. (5.15)

Воспользуемся выражением (1.51) для дифференциала энтропии через изменение температуры и изменение давления :

.

Поставляя это выражение в (5.15) получим:

.

Отсюда получим выражение для коэффициента Джоуля-Томсона:

, (5.16)

где коэффициент объемного расширения газа. Все величины, входящие в выражение для могут быть определены, если известно уравнение состояния газа.

Из формулы (5.16) следует, что знак коэффициента зависит от величины .

При , при . Для идеального газа . Для реальных газов может быть как положительным, так и отрицательным. Более того, для одного и того же газа в одной области температур может быть положительным, а в другой — отрицательным. Существует температура , характерная для данного газа, при которой коэффициент Джоуля-Томсона меняет свой знак. Эта температура называется температурой инверсии.

Вычислим коэффициент Джоуля-Томсона для газа Ван-дер-Ваальса. Для этого необходимо вычислить производную . Для этого раскроем скобки в левой части уравнения Ван-дер-Ваальса (5.5) и получим

.

Продифференцируем обе части уравнения по при :

.

Вместо поставим его значение из уравнения Ван-дер-Ваальса (5.5)и получим

.

Приведя выражение в квадратных скобках к общему знаменателю, получим:

.

После преобразования квадратной скобки, имеем:

.

Поставив это выражение в (5.16), получим:

.

После приведения квадратной скобки к общему знаменателю, имеем следующее выражение для коэффициента Джоуля-Томсона:

,

которое можно переписать в виде:

. (5.17)

Если давление газа не очень велико (порядка 100-200 атм.), то , и ими в (5.17) можно пренебречь. Тогда

.

Из этой формулы видно, что коэффициент Джоуля-Томсона положителен, если или . При коэффициент Томсона , т.е. газ при дросселировании нагревается. Температура инверсии определяется равенством .

Тот факт, что в опыте Джоуля-Томсона, который ставился при комнатной температуре, водород при расширении нагревался, в то время как другие газы охлаждались, не является, конечно, особым свойством водорода. Любой газ обнаружит такие же свойства, если ставить опыт при температуре более высокой, чем температура инверсии.

Вопросы для самоконтроля изученного материала

Реальные газы

1. В чем отличие реального газа от идеального? При каких условиях в поведении газов наступает отступление от законов Менделеева-Клапейрона?

2. Каков физический смысл поправок в уравнении Ван-дер-Ваальса? Как они вычисляются: а) из молекулярно-кинетической теории; б) через параметры критического состояния?

3. Как будут располагаться изотермы Ван-дер-Ваальса на графике PV для различных температур? Какой вид будет иметь изотерма Ван-дер-Ваальса: а) для температуры ниже критической; 6) для температуры выше критической?

4. Сравните изотермы Ван-дер-Ваальса с экспериментальными кривыми для одного и того же газа.

5.Какой эффект Джоуля-Томсона называют положительным, какой отрицательным?

6. От каких параметров зависит температура инверсии? Как записать эту зависимость? Каков физический смысл температуры инверсии?

7. Что называют насыщенным паром? Чем определяется давление насыщенного пара?

8. Какой физический смысл имеют величины b, V-b, а/V 2 , входящие в уравнение Ван-дер-Ваальса?

9. Для двух различных газов, взятых в равных количествах и имеющих одинаковые объемы и температуры, рассчитали давление по уравнению Ван-дер-Ваальса. Результаты сравнили с давлением идеального газа с такими же параметрами. Оказалось, что давление одного газа больше давления идеального газа, другое меньше. Чем объяснить полученные отличия в давлениях?

10.Зависимость давления от объема, полученная при решении уравнения Ван-дер-Ваальса, изображена на рис.1, экспериментальная кривая показана на рис.2. Чем объясняется различие в графиках?

12. В каком агрегатном состоянии находится вещество, если его состояние на графике (рис.2) определяется точками 1,2,3?

13.Какому физическому состоянию соответствуют участки ав, вб, dl кривой на рис. 1?

14.Что можно сказать о значениях заштрихованных площадей на рис.1?

15.Как с увеличением температуры вещества меняется ход графиков, приведенных на рис.1?

16.В замкнутом сосуде, содержащем некоторое вещество в двух фазах, поддерживается постоянное давление. Температура постепенно повышается от значения меньшего критического до значения большего критического. Начертите на координатной плоскости VT примерные графики процесса для случаев: а) давление равно критическому; б) давление больше критического; в) давление меньше критического. Считайте, что при температурах больших критической, вещество имеет свойства идеального газа.

17.Чем объясняется, что в процессе дросселирования при комнатной температуре водород нагревается, а кислород охлаждается?

18.Каков в опыте Джоуля-Томсона знак приращения внутренней энергии газа? Энтропии? Тепловой функции? (энтальпии)

19.Начертите экспериментальную изотерму процесса сжатия реального газа и объясните ход графика.

20.Каков смысл коэффициента в уравнении Ван-дер-Ваальса и как он выражается через размеры атомов?

21.Каков смысл коэффициента а в уравнении Ван-дер-Ваальса и как он определяется?

22.Начертите изотерму Ван-дер-Ваальса и укажите, каким состояниям соответствуют различные участки изотермы?

23.Что такое критическая температура?

24.3а счет каких физических факторов сжимаемость реального газа при малом давлении больше, чем идеального, а при большом — меньше?

25.Какие соображения позволяют выбрать давление, при котором должна быть проведена горизонтальная изотерма реального газа, соответствующая двухфазному состоянию?

26.Как наглядно объяснить зависимость знака дифференциального эффекта Джоуля-Томсона от давления газа?

27.Каким физическим условиям в газе соответствует точка инверсии дифференциального эффекта Джоуля-Томсона?

28.Чем свойства пара отличаются от свойств газа? При каких условиях к пару можно применить газовые законы?

29.От каких термодинамических параметров зависит внутренняя энергия газа

30.В чем заключается эффект Джоуля-Томсона? Каким уравнением описывается это явление?

31.В чем сущность процесса дросселирования газа? Является ли выпуск сжатого газа в пустоту процессом дросселирования? Как изменяется температура идеального газа при выпуске его в пустоту?

32.В чем заключается явление Джоуля-Томсона? Каким уравнением описывается это явление?

33.Какая температура называется температурой инверсии Джоуль-Томсон эффекта?

34.Какие значения должны иметь величины а и b в уравнении Ван-дер-Ваальса, чтобы газ всегда охлаждался при дросселировании?

35.Какие участки кривой Ван-дер-Ваальса соответствует нестабильным и метастабильным состояниям? Объясните смысл и возможность осуществления этих состояний.

36.Что такое перегретая жидкость? Укажите ее область на изотерме Ван-дер-Ваальса.

37.Что такое дросселирование газа? Почему процесс дросселирования в идеальном газе не сопровождается изменением температуры, а в не идеальном газе сопровождается?

38. Что происходит с газом Ван-дер-Ваальса с поправкой а =0 в опыте Джоуля-Томсона, газ нагревается, охлаждается или температура газа не меняется?

39. Что происходит с газом Ван-дер-Ваальса с поправкой в =0 в опыте Джоуля-Томсона, газ нагревается, охлаждается или температура газа не меняется?

40.Какое значение имеет приращение внутренней энергии газа ΔU в опыте Джоуля-Томсона для случая, когда начальное состояние характеризуется точкой, лежащей па кривой инверсии, — положительное, отрицательное или не изменяется?

41.Как изменяются температуры водорода и кислорода в результате дросселирования при комнатной температуре?

42. Получите приведенное уравнение Ван-дер-Ваальса. В чем его преимущество?

43. Каким выражением определяется критическая температура газа Ван-дер-Ваальса?

44. Каким выражением определяется критический объем газа Ван-дер-Ваальса?

45. Каким выражением определяется критическое давление газа Ван-дер-Ваальса?

46. Какому выражению соответствует связь между давлением, объемом и температурой киломоля газа Ван-дер-Ваальса в критической точке?

48. Найти приращение энтропии ΔS киломоля газа Ван-дер-Ваальса при изотермическом расширении от объема V1 до объема V2. Считать, что поправка Ван-дер-Ваальса в известна.

Глава 6. Жидкое состояние

Строение жидкостей

Жидкое состояние, занимая промежуточное положение между газом и кристаллами, сочетает в себе некоторые черты обоих этих состояний. В частности, для жидкостей, как и для кристаллических тел, характерно наличие определенного объема, а вместе с тем, жидкость, подобно газу, принимает форму того сосуда, в котором она находится. Известно, что для кристаллического состояния характерно упорядоченное расположение частиц, в газах, наоборот, царит полный хаос. В жидкостях, как показывают рентгенографические исследования, расположение частиц является также промежуточным. В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным. Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным и довольно быстро порядок в расположении частиц полностью исчезает. В кристаллах имеет место дальний порядок — упорядоченное расположение частиц по отношению к любой частице наблюдается в пределах всего объема.

Из-за отсутствия дальнего порядка жидкости (за исключением жидких кристаллов) не обнаруживают анизотропии, характерной для кристаллов с их правильным расположением частиц.

В жидкостях с удлиненными молекулами наблюдается одинаковая ориентация молекул в пределах значительного объема, чем обуславливается анизотропия оптических и некоторых других свойств. Такие жидкости получили название жидких кристаллов. У них упорядочена только ориентация молекул, взаимное же расположение молекул, как и в обычных жидкостях, дальнего порядка не обнаруживают. Из-за того, что в жидкости отсутствует дальний порядок, а молекулы жидкости испытывают значительные силы межмолекулярного взаимодействия, его теория гораздо менее развита, чем теория кристаллического, и, особенно, газообразного состояний.

Значительная заслуга в разработке ряда проблем теории жидкого состояния принадлежит ученому Я.И.Френкелю. Согласно Френкелю, тепловое движение в жидкостях имеет следующий характер. Каждая молекула в течение некоторого времени колеблется около определенного положения равновесия. Время от времени молекула меняет место равновесия, скачком перемещаясь в новое положение, отстоящее от предыдущего на расстоянии порядка размеров молекул. Таким образом, молекулы лишь медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест. Время колебания молекул в этих местах, или так называемое время оседлой жизни зависит от температуры жидкости, резко убывая при повышении температуры. В связи с этим при повышении температуры сильно возрастает подвижность молекул, что, в свою очередь влечет за собой уменьшение вязкости жидкости.

Поверхностное натяжение

Поверхность жидкости, соприкасающейся с другой средой (собственным паром, какой-либо другой жидкостью или твердым телом) находится в особых условиях по сравнению с остальной массой жидкости. Возникают эти особые условия потому, что молекулы пограничного слоя жидкости в отличие от молекул в ее глубине окружены молекулами той же жидкости не со всех сторон. Часть соседей поверхностных молекул — это частицы второй среды, с которой жидкость граничит. Эта среда может отличаться от жидкости, как природой, так и плотностью частиц. Имея же разных соседей, молекулы поверхностного слоя и взаимодействуют с ними различным способом. Поэтому силы, действующие на каждую молекулу в этом слое, оказываются неуравновешенными, существует некоторая равнодействующая сила, направленная либо в сторону объема жидкости, либо в сторону объема граничной с ней среды. Вследствие этого перемещение молекулы из поверхностного слоя в глубь жидкости или вглубь среды, с которой она граничит, сопровождается совершением работы. Равнодействующая всех сил, действующих на молекулы внутри жидкости равно нулю, поэтому их перемещение не сопровождается работой. Величина и знак работы совершаемой при перемещении молекул поверхностного слоя зависит от соотношения между силами взаимодействия молекул этого слоя со «своими» же молекулами и с молекулами второй среды. В случае, когда жидкость граничит со своим собственным паром, сила, испытываемая молекулами поверхностного слоя, направлена внутрь жидкости. Это связано с тем, что плотность молекул в жидкости намного больше, чем в насыщенном паре над жидкостью, соответственно, сила притяжения молекулами поверхностного слоя со стороны молекул жидкости больше, чем со стороны молекул пара.

Молекулы поверхностного слоя, перемещаясь во внутрь жидкости, совершают положительную работу. Наоборот, переход молекул из объема жидкости к поверхности сопровождается отрицательной работой, т.е. требует затраты внешней работы. Если поверхность жидкости увеличивается, это значит, что некоторое количество молекул из объема жидкости переходит на поверхность. Для этого надо затратить внешнюю работу. Таким образом, увеличение поверхности жидкости сопровождается отрицательной работой. Наоборот, при сокращении поверхности совершается положительная работа. Если при постоянной температуре обратимым путем изменить поверхность жидкости на бесконечно малую величину , то необходимая для этого работа равна

.

Знак «минус» показывает, что при увеличении поверхности совершается отрицательная работа. Коэффициент называется коэффициентом поверхностного натяжения.

Из сказанного выше следует, что молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами, находящимися в объеме жидкости, потенциальной энергией , которая измеряется работой, которую могут совершить молекулы поверхности, перемещаясь внутрь жидкости под действием сил притяжения со стороны молекул в объеме жидкости.

Поскольку энергия обязана своим происхождением наличию поверхности жидкости, то она должна быть пропорциональна площади поверхности жидкости

. (6.1)

Тогда изменение поверхности повлечет за собой изменение потенциальной энергии , которая сопровождается работой . Если изменение поверхности происходит при постоянной температуре, то совершаемая работа равна изменению свободной энергии поверхности

. (6.2)

В

Таким образом, поверхность жидкости обладает избыточной по сравнению с остальной массой жидкости потенциальной энергией. Рассмотрим, к чему это приводит. Известно, что всякая система в состоянии равновесия имеет минимальное значение энергии. Из формулы (6.1) следует, что поверхность жидкости в состоянии равновесия должна иметь минимальное значение поверхности. Это в свою очередь означает, что должны существовать силы, препятствующие увеличению поверхности, т.е. стремящиеся сократить эту поверхность. Эти силы должны быть направлены вдоль самой поверхности, по касательной к ней. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие эту поверхность. Эти силы называются силами поверхностного натяжения.

Рассмотрим пример. Если проволочную рамку, одна из сторон которой подвижна (см. рис.1) опустить в мыльный раствор, то вся она затянется пленкой жидкости. Силы поверхностного натяжения принуждают пленку сокращаться, и подвижная перекладина АВ вслед за пленкой перемещается вверх. Чтобы сохранить ее в равновесии к перекладине нужно приложить силу Р в виде груза. Таким образом, сила поверхностного натяжения, действующая в пленке, перпендикулярна к линии АВ, которая в данном случае и является линией раздела. Такие же силы действуют на другие стороны рамки. Но здесь они уравновешиваются силами притяжения жидкости к веществу жесткой рамки. Описанный опыт может быть использован для определения численного значения коэффициента поверхностного натяжения жидкости. Действительно, поверхностная сила , с учетом того, что пленка имеет две поверхности, равно при равновесии весу груза Р, т.е.

.

Если под действием этой силы перекладина, увлекаемая пленкой, переместилась на расстояние из положения АВ, то работа, совершенная силой равна . Эта работа как видно из (6.2) равно уменьшению свободной энергии пленки, которая равна:

.

В данном случае , где — длина рамки. Отсюда

.

. (6.3)

Из (6.3) следует, что коэффициент поверхностного натяжения может быть определен как величина, равная силе, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела.

ВАН-ДЕР-ВААЛЬСА УРАВНЕНИЕ

ВАН-ДЕР-ВААЛЬСА УРАВНЕНИЕ – модельное уравнение состояния реального газа, учитывающее, в отличие от уравнения состояния идеального газа, взаимодействие молекул между собой, а именно: мощное отталкивание на малых расстояниях R между центрами масс молекул

() и их притяжение на больших

(R > R12) расстояниях. Здесь R1 и R2 – газокинетические радиусы молекул. В ряде случаев, для простоты, используется средний газокинетический диаметр взаимодействующих молекул , очевидно для одинаковых молекул .

Уравнение состояния является функциональной связью между четырьмя термодинамическими параметрами состояния физической системы. Для описания однокомпонентных (состоящих из частиц одного сорта) физических систем достаточно четырех параметров. Для систем, состоящих из различных частиц (например, воздух – смесь азота, кислорода, аргона, углекислого газа и др.), полный перечень необходимых параметров включает относительные концентрации компонент смеси. Для простоты, будут рассмотрены только однокомпонентные системы. Традиционный и наиболее употребительный набор параметров состояния состоит из массы системы m, давления p, объема V и температуры T. Использование массы системы в качестве одного из ее параметров предполагает, что известна молярная масса вещества , из которого она состоит. Набор параметров состояния «продиктован» экспериментом, так как все входящие в него величины достаточно просто и непосредственно измеряются. Здесь число молей. Разумеется, возможны и другие наборы параметров состояния: число частиц в системе , объем, энтропия и внутренняя энергия (NA – число Авогадро).

Уравнение состояния идеального газа (газа невзаимодействующих материальных точек) было получено Э.Клапейроном (1834) в результате объединения трех экспериментально установленных газовых законов: 1) Р.Бойля (1662) и Э.Мариотта (1676); 2) Шарля (1785); 3) Гей-Люссака (1802). Сейчас это уравнение (здесь R – универсальная газовая постоянная)

называют уравнением Клапейрона – Менделеева.

В данном частном случае заслуга Д.И.Менделеева в том, что он вывел написанное выше универсальное уравнение состояния идеальных газов. В частности, при исследовании явлений, не укладывающихся в модель идеального газа и обусловленных взаимодействием молекул между собой (поверхностное натяжение жидкостей и сопутствующие капиллярные явления, непрерывные и скачкообразные фазовые переходы жидкость – газ), Менделеев ввел понятие температуры «абсолютного» кипения, которая впоследствии была названа Эндрюсом критической температурой – температурой критического состояния вещества, это уже сфера непосредственных применений уравнения Ван-дер-Ваальса.

Учет взаимодействия между молекулами газа при расчете его термодинамических характеристик впервые был выполнен в 1873 голландским физиком Я.Д.Ван-дер-Ваальсом, именем которого названо полученное им уравнение состояния такого газа. Строго говоря, ван-дер-ваальсовским можно называть газ, потенциальная энергия притяжения молекул которого на больших расстояниях убывает с ростом R по закону

его, например, нет места в плазме состоящей из заряженных частиц, потенциальная энергия взаимодействия которых на больших расстояниях убывает в соответствии с законом Кулона

т.е существенно медленнее.

Силы Ван-дер-Ваальса (R > d0)

для молекулярных и атомарных газов носят достаточно универсальный характер. Квантовомеханическое усреднение потенциальной энергии по взаимным ориентациям взаимодействующих объектов практически во всех случаях приводит к асимптотическому закону (1), (3).

Во-первых, это взаимодействие полярных молекул, т.е. молекул с собственным электрическим дипольным моментом (молекулы типа HCl, H2O и т.п.). Соответствующие силы называют ориентационными.

Во-вторых, взаимодействие полярной и неполярной молекулы (не имеющей собственного электрического дипольного момента): He, Ar, … N2, O2 … . Такое взаимодействие принято называть индукционным.

Наконец, взаимодействие неполярных атомов и молекул – дисперсионное взаимодействие. Происхождение дисперсионных сил строго объясняется только в рамках квантовой механики. Качественно возникновение этих сил можно объяснить – в результате квантовомеханических флуктуаций у неполярной молекулы возникает мгновенный дипольный момент, его электрическое поле поляризует другую неполярную молекулу и у неё появляется наведенный мгновенный дипольный момент. Энергия взаимодействия неполярных молекул – это квантовомеханическое среднее энергии взаимодействия таких мгновенных диполей. Дисперсионные силы не зависят от наличия или отсутствия собственных дипольных моментов у атомов и молекул и потому всегда имеют место. В случае неполярных атомов и молекул дисперсионные силы в десятки и даже сотни раз больше сил ориентационных и индукционных. В случае молекул с большим собственным дипольным моментом, например, молекул воды H2O, дисперсионная сила в три раза меньше ориентационной. Все эти силы имеют асимптотику (3), таким образом, в общем случае усредненная потенциальная энергия

(4) при .

Мощное отталкивание молекул на малых расстояниях возникает при перекрытии внешних заполненных электронных оболочек и обусловлено принципом запрета Паули. Зависимость этих сил от R нельзя объяснить в рамках чисто классической электродинамики. Силы отталкивания в большей мере, чем силы притяжения, зависят от конкретных особенностей строения электронных оболочек взаимодействующих молекул и требуют для своего определения громоздких квантовомеханических расчетов. Хорошее согласие с экспериментом дает следующая модель

Из (5) видно, что уменьшение расстояния в два раза приводит к увеличению силы отталкивания 15 более чем в 8 тысяч раз, что и позволяет говорить о «мощных» силах отталкивания.

При практических расчетах широко используется модельный потенциал Ленард – Джонса, (с учетом (1) и (5))

показанный на рис. 1. Видно, что параметр D имеет смысл глубины потенциальной ямы, а параметр
определяет ее размер: абсцисса минимума .

Уравнение состояния ван-дер-ваальсовского газа, само по себе приближенное, может быть, тем не менее, точно получено в рамках модели притягивающихся твердых шаров. В этой модели весьма большие, но конечные силы отталкивания на малых расстояниях заменяются бесконечно большими силами, что означает замену близкого к вертикали криволинейного потенциального ба­­рь­ера левее точки минимума (рис. 1) вертикальной потенциальной стенкой в соответствующей точке: R = d0, что показано на рис. 2. При расстояниях сохраняется зависимость от R по формуле (6).

Вертикальная потенциальная стенка ставится именно в точке R = d0 = 2R0, т.к. минимальное расстояние между центрами двух твердых шаров равно их диаметру.

Притяжение молекул на расстояниях дает поправку к внутренней энергии газа, равную энергии их взаимодействия: Uвз. При достаточной разреженности газа с хорошей точностью справедливо предположение о попарном взаимодействии молекул, что приводит к выражению для Uвз:

(7) , 24

Где одна из двух постоянных Ван-дер-Ваальса, учитывающая притяжение между молекулами, N – число молекул в газе, V – объем газа. Можно просто объяснить аналитическую структуру выражения (7). Число молекул в единице объема , взаимодействуют они попарно, число пар молекул в единице объема , что, учитывая макроскопичность n, можно считать точно равным . Средняя энергия взаимодействия одной пары молекул, как видно из структуры интеграла в (7), равна , откуда для объема V, в силу аддитивности энергии, получается , т.е. формула (7).

Внутренняя энергия реального газа складывается из суммарной кинетической энергии его молекул (той же, что и в идеальном газе при тех же параметрах состояния) и потенциальной энергии их взаимодействия. Отсюда, например, для одноатомного газа с температурой T можно записать:

Конечность объема молекул приводит к тому, что не весь объем сосуда V доступен для их движения – уменьшается «свобода» размещения молекул газа в его фазовом пространстве, что, в свою очередь, уменьшает статистический вес макросостояния и энтропию газа. Энтропия идеального (молекулы – материальные точки) одноатомного газа с температурой , занимающего сосуд объемом V, имеет вид

Если объем недоступный для движения молекул – шариков реального газа, равен V0, то его энтропия

Для двух молекул радиуса R0 с минимальным расстоянием между центрами 2R0, объем, недоступный для движения, – это объем сферы, равный

, где – учетверенный объем одной молекулы, это вторая константа Ван-дер-Ваальса.

Недоступный для движения объем в расчете на одну молекулу равен , а для N молекул –

, откуда окончательное выражение для энтропии одноатомного ван-дер-ваальсовского газа имеет вид

В рамках рассматриваемой модели параметры а и b (вторые формулы в (8) и (12)) являются атомными константами (диаметр молекулы d0 считается фиксированной величиной, не зависящей от температуры, хотя, строго говоря, это не так), не зависящими параметров термодинамического состояния вещества.

Основное термодинамическое тождество имеет вид

это первое начало термодинамики, в которое для квазистатических процессов подставлены выражения для получаемой системой теплоты и (–pdV) для совершаемой над системой работы, оно позволяет получить уравнение состояния Ван-дер-ваальсовского газа с выражения для давления, следующего из (12)

В (13) индекс S указывает на то, что дифференцировать нужно при постоянной энтропии. Подстановка (8) и (11) в (13) приводит к уравнению состояния реального газа Ван-дер-Ваальса

Переход от числа молекул в газе N к числу молей осуществляется с помощью замены , где NA – число Авогадро и соответствующего этой замене переопределения постоянных Ван-дер-Ваальса

В этих переменных уравнение Ван-дер-Ваальса имеет вид ( универсальная газовая постоянная):

Главное значение уравнения Ван-дер-Ваальса состоит, во-первых, в простоте и физической понятности его аналитической структуры: поправка a учитывает притяжение молекул на больших расстояниях, поправка b – их отталкивание на малых расстояниях. Уравнение состояния идеального газа получается из (16) путем предельного перехода a → 0, b → 0. стрелки

Во-вторых, уравнение Ван-дер-Ваальса обладает (несмотря на приближенность модели) широким спектром качественных, а в ряде случаев и полуколичественных предсказаний о поведении реального вещества, которые следуют из анализа уравнения (16) и вида соответствующих ему изотерм и касаются поведения вещества не только в достаточно разреженном газообразном состоянии, но и в жидком и двухфазном состояниях, т.е. в состояниях, далеких от априорной области применимости модели Ван-дер-Ваальса.

Рис. 3. Изотермы Ван-­дер-Ваальса. Цифры, указывают отношение температуры, соответствующей данной изотерме, к критической тем­пературе вещества. Единица соответствует критической изотерме T = Tкр.

Уравнение (16) имеет особую точку – точку перегиба, в которой

это соответствует реальной физической особенности – критическому состоянию вещества, в котором исчезает различие между жидкостью и ее паром (жидкой и газовой фазами), находящимися в состоянии термодинамического равновесия. Критическая точка является одним из концов кривой равновесия жидкость – пар на диаграмме (p, T), другим концом этой кривой является тройная точка, в которой в термодинамическом равновесии находятся все три фазы: газовая, жидкая и кристаллическая. Критической точке соответствуют критическая температура Tкр., критическое давление pкр. и критический объем Vкр. При температурах выше критической переход «жидкость – пар» происходит без скачка плотности, в критической точке исчезает мениск в капилляре, обращается в нуль теплота испарения и в бесконечность изотермическая сжимаемость (пропорциональная производной ).

Решение уравнений (17) дает связь критических параметров с постоянными Ван-дер-Ваальса a и b:

Формулы (18) позволяют найти константы а и b по экспериментально определенным параметрам критического состояния. Одним из показателей количественной точности уравнения Ван-дер-Ваальса является результат критического коэффициента , следующего из (18) c его экспериментальным значением

ВеществоKкр, экспериментВеществоKкр, эксперимент
H23,03SO23,60
He3,13C6H63,76
N23,42H2O4,46
O23,42CO24,49

Если для водорода , то для углекислого газа это отношение уже составляет .

Критическое давление и критическая температура, например, воды равны соответственно: , .

На рис. 4 дано несколько утрированное (по сравнению с рис. 3) качественное изображение изотермы Ван-дер-Ваальса с температурой ниже критической. На участке 3–4–5 производная , что нереализуемо. Вещество в таком состоянии существовать не может, так как оно термодинамически неустойчиво: увеличение объема при постоянной температуре приводит к увеличению давления. Невозможность существования вещества в таком состоянии вытекает и из второго начала термодинамики, из которого строго следует, что для любого вещества изотермическая производная может быть только меньше нуля, это плата за интерполя­ционный характер модели Ван-дер-Ваальса. Поправка к энергии рассчитана в предположении парности

взаимодействия молекул, что справедливо при малых плотностях (больших объемах) – это «хвост» 6–7 изотермы на рис. 4, где она асимптотически сближается с изотермой идеального газа. Поправка на конечность размера молекул сделана в предположении, что молекулы ведут себя как твердые шары, это приближенно имеет место в жидкости при объемах, близких к суммарному объему плотно упакованных молекул, чему соответствует участок 1–2 изотермы. Следовательно, только на «концах» 1–2 и 6–7 изотермы ван-дер-ваальсовский подход может претендовать на приближенное количественное и правильное качественное описание. В промежуточной области теоретических оснований для таких претензий нет и, как следствие, получается нефизический участок 3–4–5.

Таким образом, участок 1–2 может быть поставлен в соответствие жидкому состоянию вещества. Его вертикальность обусловлена тем, что при V стрелка vb знаменатель в первом слагаемом (16) обращается в нуль и кривая выходит на вертикальную асимптоту V = vb = V0. В эксперименте этому соответствует ничтожно малая (по сравнению с газами) сжимаемость жидкостей. На участке 6–7 изотерма Ван-дер-Ваальса близка к изотерме идеального газа.

При температурах ниже критической, когда только и есть нефизический участок 3–4–5 (см. рис. 3), переход из жидкого состояния 1–2 в газовое состояние 6–7 происходит только через двухфазное состояние. Известно, что давление в двухфазной системе есть однозначная функция температуры, поэтому в переменных (p, V) соответствующий двухфазному состоянию На рис. 4 участок изотермы является отрезком горизонтальной прямой (участок 2–4–6 на рис. 4).

В уравнении Ван-дер-Ваальса нет горизонтального участка, однако наличие ван-дер-ваальсовского нефизического участка 3–4–5 позволяет теоретически определить «высоту» двухфазного участка 2–4–6, т.е. давление в двухфазной системе при данной температуре.

Если рассмотреть циклический процесс 2–3–4–5–6–4–2 (замкнутый контур ) и, учитывая, что во всех точках этого цикла температура постоянна, проинтегрировать основное термодинамическое тождество, то получим
(19) .

Равенство нулю интегралов в правой части (19) есть следствие замкнутости процесса и того, что энтропия S и внутренняя энергия U – функции состояния. Равенство нулю интеграла означает, что двухфазный участок следует расположить так, чтобы площади S1 и S2 (рис. 4) были равны (правило Максвелла).

Участки 2–3 и 5–6 соответствуют реальным метастабильным состояниям вещества, а именно: 2–3 – перегретая жидкость, 6–5 – переохлажденный (пересыщенный) пар. В этих состояниях жидкость или пар могут существовать в течение некоторого времени, если нет центров парообразования и конденсации. Появление в жидкости центров парообразования ведет к немедленному возникновению и росту на их месте пузырьков пара. Аналогично, появление центров конденсации в переохлажденном паре ведет к немедленному возникновению и росту на их месте капель жидкости. Оба явления используются для регистрации треков заряженных частиц: первое в пузырьковой камере, второе в камере Вильсона (туманной камере). Роль центров парообразования (конденсации) играют ионы, которые оставляет на своем пути заряженная частица в результате ионизации молекул жидкости (пара) при столкновениях с ними. Пузырьки (капли) существуют достаточное для их фотографирования время, что делает видимой траекторию, по которой двигалась заряженная частица. Исследование трека частицы позволяет определить ее энергию и импульс, соответственно, вычислить ее массу, что является одной из важнейших задач физики элементарных частиц.

При температуре , что для воды составляет 273° C, минимум ван-дер-ваальсовской изотермы достигает нуля давления. При более низких температурах (рис. 3, кривые 0,8 и 0,7) давление в окрестности минимума становится отрицательным, что означает, что жидкость из-за действия сил притяжения между ее молекулами может «сопротивляться растяжению» (подобно пружине). Растянутую жидкость (например, ртуть) можно получить экспериментально, беря запаянную с одного конца стеклянную трубку длиной около метра и погружая ее в горизонтальную кювету с ртутью. После заполнения трубки ртутью трубку медленно, без встряхиваний поднимают в вертикальное положение, при этом в трубке наблюдается столб ртути, длина которого заметно превышает длину, соответствующую внешнему давлению, например, 760 мм.

Савельев И.В. Курс общей физики, т. 3, Молекулярная физика и термодинамика, М.: Наука, Физматлит, 1998;
Сивухин Д.В. Общий курс физики, т. 2, Термодинамика и молекулярная физика, М., Физматлит, 2003;
Вдовиченко Н.В. Развитие фундаментальных принципов статистической физики в первой половине XX века. М., НАУКА, 1986.


источники:

http://lektsii.org/3-102086.html

http://www.krugosvet.ru/enc/fizika/van-der-vaalsa-uravnenie