Приведите каноническое уравнение мнимого эллипса

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат — каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и — расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Мнимые прямые. Линии второго порядка

8.3.15. Точка А лежит на прямой . Расстояние от точки А до плоскости

8.3.16. Составьте уравнение прямой, симметричной прямой

относительно плоскости .

8.3.17. Составьте уравнения проекций на плоскость следующих прямых:

а) ;

б)

в) .

8.3.18. Найдите угол между плоскостью и прямой:

а) ;

б) .

8.3.19. Найдите точку, симметричную точке относительно плоскости, проходящей через прямые:

и

8.3.20. Точка А лежит на прямой

Расстояние от точки А до прямой равно . Найдите координаты точки А.

§ 8.4. КРИВЫЕ ВТОРОГО ПОРЯДКА

Установим на плоскости прямоугольную систему координат и рассмотрим общее уравнение второй степени

в котором .

Множество всех точек плоскости, координаты которых удовлетворяют уравнению (8.4.1), называется кривой (линией ) второго порядка .

Для всякой кривой второго порядка существует прямоугольная система координат, называемая канонической, в которой уравнение этой кривой имеет один из следующих видов:

1) (эллипс);

2) (мнимый эллипс);

3) (пара мнимых пересекающихся прямых);

4) (гипербола);

5) (пара пересекающихся прямых);

6) (парабола);

7) (пара параллельных прямых);

8) (пара мнимых параллельных прямых);

9) (пара совпадающих прямых).

Уравнения 1) – 9) называются каноническими уравнениями кривых второго порядка.

Решение задачи приведения уравнения кривой второго порядка к каноническому виду включает нахождение канонического уравнения кривой и канонической системы координат. Приведение к каноническому виду позволяет вычислить параметры кривой и определить ее расположение относительно исходной системы координат. Переход от исходной прямоугольной системы координат к канонической осуществляется путем поворота осей исходной системы координат вокруг точки О на некоторый угол j и последующего параллельного переноса системы координат.

Инвариантами кривой второго порядка (8.4.1) называются такие функции от коэффициентов ее уравнения, значения которых не меняются при переходе от одной прямоугольной системы координат к другой такой же системе.

Для кривой второго порядка (8.4.1) сумма коэффициентов при квадратах координат

,

определитель, составленный из коэффициентов при старших членах

и определитель третьего порядка

Значение инвариантов s, d, D можно использовать для определения типа и составления канонического уравнения кривой второго порядка.

Классификация кривых второго порядка, основанная на инвариантах

Кривая эллиптического типа

sD 0. Мнимый эллипс

Пара мнимых прямых, пересекающихся в действительной точке

Кривая гиперболического типа

Пара пересекающихся прямых

Кривая параболического типа

Пара параллельных прямых (различных, мнимых или совпадающих)

Рассмотрим подробнее эллипс, гиперболу и параболу.

Эллипсом (рис. 8.1) называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек этой плоскости, называемых фокусами эллипса , есть величина постоянная (большая, чем расстояние между фокусами). При этом не исключается совпадение фокусов эллипса. Если фокусы совпадают, то эллипс представляет собой окружность.

Полусумму расстояний от точки эллипса до его фокусов обозначают через а, половину расстояний между фокусами – с. Если прямоугольная система координат на плоскости выбрана так, что фокусы эллипса располагаются на оси Оx симметрично относительно начала координат, то в этой системе координат эллипс задается уравнением

, (8.4.2)

называемым каноническим уравнением эллипса , где .

Рис. 8.1

При указанном выборе прямоугольной системы координат эллипс симметричен относительно осей координат и начала координат. Оси симметрии эллипса называют его осями , а центрего симметрии – центром эллипса . Вместе с тем часто осями эллипса называют числа 2a и 2b, а числа a и b – большой и малой полуосью соответственно.

Точки пересечения эллипса с его осями называются вершинами эллипса . Вершины эллипса имеет координаты (а,0), (–а,0), (0,b), (0,–b).

Эксцентриситетом эллипса называется число

.

Отсюда видно, что эксцентриситет характеризует форму эллипса: чем ближе e к нулю, тем больше эллипс похож на окружность; при увеличении e эллипс становится более вытянутым.

Чтобы пояснить это на конкретном примере, покажу вам, что соответствует в этой интерпретации следующему утверждению: (действительная или мнимая) точка Р лежит на (действительной или мнимой) прямой g. При этом, конечно, приходится различать такие случаи:

1) действительная точка и действительная прямая,

2) действительная точка и мнимая прямая,

Случай 1) не требует от нас особых разъяснений; здесь перед нами одно из основных соотношений обычной геометрии.

В случае 2) через заданную действительную точку обязательно должна проходить наряду с заданной мнимой прямой также и комплексно сопряженная с нею прямая; следовательно, эта точка должна совпадать с вершиной того пучка лучей, которым мы пользуемся для изображения мнимой прямой.

Подобно этому в случае 3) действительная прямая должна быть тождественна с носителем той прямолинейной инволюции точек, которая служит представителем заданной мнимой точки.

Наиболее интересным является случай 4) (рис. 96): здесь, очевидно, комплексно сопряженная точка должна также лежать на комплексно сопряженной прямой, а отсюда следует, что каждая пара точек инволюции точек, изображающей точку Р, должна находиться на некоторой паре прямых инволюции прямых, изображающей прямую g, т. е. что обе эти инволюции должны быть расположены перспективно одна относительно другой; кроме того, оказывается, что и стрелки обеих инволюций также расположены перспективно.

Вообще, в аналитической геометрии плоскости, уделяющей внимание также и комплексной области, мы получим полную действительную картину этой плоскости, если к совокупности всех ее действительных точек и прямых присоединим в качестве новых элементов совокупность рассмотренных выше инволюционных фигур вместе со стрелками их направлений. Здесь будет достаточно, если я намечу в общих очертаниях, какой вид приняло бы при этом построение такой действительной картины комплексной геометрии. При этом я буду следовать тому порядку, в котором теперь обычно излагают первые предложения элементарной геометрии.

1) Начинают с аксиом существования, назначение которых — дать точную формулировку наличия только что упомянутых элементов в расширенной по сравнению с обычной геометрией области.

2) Затем аксиомы соединения, которые утверждают, что также и в определенной в п. 1) расширенной области! через (каждые) две точки проходит одна и только одна прямая и что (всякие) две прямые имеют одну и только одну общую точку.

При этом подобно тому, что мы имели выше, приходится каждый раз различать четыре случая в зависимости от того, являются ли действительными заданные элементы, и представляется очень интересным точно продумать, какие именно действительные построения с инволюциями точек и прямых служат изображением этих комплексных соотношений.

3) Что же касается аксиом расположения (порядка), то здесь по сравнению с действительными соотношениями выступают на сцену совершенно новые обстоятельства; в частности, все действительные и комплексные точки, лежащие на одной фиксированной прямой, а также все лучи, проходящие через одну фиксированную точку, образуют двумерный континуум. Ведь каждый из нас вынес из изучения теории функций привычку изображать совокупность значений комплексной переменной всеми точками плоскости.

4) Наконец, что касается аксиом непрерывности, то я укажу здесь только, как изображаются комплексные точки, лежащие как угодно близко к какой-нибудь действительной точке. Для этого через взятую действительную точку Р (или через какую-нибудь другую близкую к ней действительную точку) нужно провести какую-нибудь прямую и рассмотреть на ней такие две разделяющие одна другую (т. е. лежащие «скрещенным образом») пары точек (рис. 97), чтобы две точки взятые из разных пар, лежали близко одна к другой и к точке Р; если теперь неограниченно сближать точки то инволюция, определяемая названными парами точек, вырождается, т. е. обе ее до сих пор комплексные двойные точки совпадают с точкой Каждая из обеих мнимых точек, изображаемых этой инволюцией (вместе с той или другой стрелкой), переходит, следовательно, непрерывно в некоторую точку, близкую к точке Р, или даже непосредственно в точку Р. Конечно, для того чтобы быть в состоянии с пользой применять эти представления о непрерывности, необходимо детально с ними поработать.

Хотя все это построение и является по сравнению с обычной действительной геометрией достаточно громоздким и утомительным, но зато оно может дать несравненно больше. В частности, оно способно поднять на уровень полной геометрической наглядности алгебраические образы, понимаемые как совокупности их действительных и комплексных элементов, и при его помощи можно наглядно уяснить себе на самих фигурах такие теоремы, как основная теорема алгебры или теорема Безу о том, что две кривые порядков имеют, вообще говоря, ровно общих точек. Для этой цели следовало бы, конечно, осмыслить основные положения в значительно более точной и наглядной форме, чем это было сделано до сих пор; впрочем, в литературе уже имеется весь существенно необходимый для таких исследований материал.

Но в большинстве случаев применение этого геометрического толкования привело бы все же при всех его теоретических преимуществах к таким усложнениям, что приходится довольствоваться его принципиальной возможностью и возвращаться фактически к более наивной точке зрения, заключающейся в следующем: комплексная точка есть совокупность трех комплексных координат, и с нею можно оперировать точно так же, как и с действительными точками. В самом деле, такое введение мнимых элементов, воздерживающееся от каких бы то ни было принципиальных рассуждений, всегда оказывалось плодотворным в тех случаях, когда нам приходилось иметь дело с мнимыми циклическими точками или с окружностью сфер. Как уже было сказано, впервые стал пользоваться мнимыми элементами в этом смысле Понселе; его последователями в этом отношении были другие французские геометры, главным образом Шаль и Дарбу; в Германии ряд геометров, в особенности Ли, также применяли с большим успехом такое понимание мнимых элементов.

Этим отступлением в область мнимого я заканчиваю весь второй отдел моего курса и обращаюсь к новой главе,

Линии второго порядка

плоские линии, декартовы прямоугольные координаты которых удовлетворяют алгебраическому уравнению 2-й степени

a 11 x 2 + a 12 xy + a 22 y 2 + 2a 13 x + 2a 23 y + a 11 = 0. (*)

Уравнение (*) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую Л. в. п. В зависимости от значений коэффициентов общего уравнения (*) оно может быть преобразовано с помощью параллельного переноса начала и поворота системы координат на некоторый угол к одному из 9 приведённых ниже канонических видов, каждому из которых соответствует определённый класс линий. Именно,

y 2 = 2px — параболы,

x 2 — а 2 = 0 — пары параллельных прямых,

x 2 + а 2 = 0 — пары мнимых параллельных прямых,

x 2 = 0 — пары совпадающих параллельных прямых.

Исследование вида Л. в. п. может быть проведено без приведения общего уравнения к каноническому виду. Это достигается совместным рассмотрением значений т. н. основных инвариантов Л. в. п. — выражений, составленных из коэффициентов уравнения (*), значения которых не меняются при параллельном переносе и повороте системы координат:

S = a 11 + a 22 , (a ij = a ji ).

Так, например, эллипсы, как нераспадающиеся линии, характеризуются тем, что для них Δ ≠ 0; положительное значение инварианта δ выделяет эллипсы среди других типов нераспадающихся линий (для гипербол δ

Три основные инварианта Δ, δ и S определяют Л. в. п. (кроме случая параллельных прямых) с точностью до движения (См. Движение) евклидовой плоскости: если соответствующие инварианты Δ, δ и S двух линий равны, то такие линии могут быть совмещены движением. Иными словами, эти линии эквивалентны по отношению к группе движений плоскости (метрически эквивалентны).

Существуют классификации Л. в. п. с точки зрения др. групп преобразований. Так, относительно более общей, чем группа движений, — группы аффинных преобразований (См. Аффинные преобразования) — эквивалентными являются любые две линии, определяемые уравнениями одного канонического вида. Например, две подобные Л. в. п. (см. Подобие) считаются эквивалентными. Связи между различными аффинными классами Л. в. п. позволяет установить классификация с точки зрения проективной геометрии (См. Проективная геометрия), в которой бесконечно удалённые элементы не играют особой роли. Действительные нераспадающиеся Л. в. п.: эллипсы, гиперболы и параболы образуют один проективный класс — класс действительных овальных линий (овалов). Действительная овальная линия является эллипсом, гиперболой или параболой в зависимости от того, как она расположена относительно бесконечно удалённой прямой: эллипс пересекает несобственную прямую в двух мнимых точках, гипербола — в двух различных действительных точках, парабола касается несобственной прямой; существуют проективные преобразования, переводящие эти линии одна в другую. Имеется всего 5 проективных классов эквивалентности Л. в. п. Именно,

(x 1 , x 2 , x 3 — однородные координаты):

x 1 2 + x 2 2 — x 3 2 = 0 — действительный овал,

x 1 2 + x 2 2 + x 3 2 = 0 — мнимый овал,

x 1 2 — x 2 2 = 0 — пара действительных прямых,

x 1 2 + x 2 2 = 0 — пара мнимых прямых,

x 1 2 = 0 — пара совпадающих действительных прямых.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое «Линии второго порядка» в других словарях:

Плоские линии, прямоугольные координаты точек которых удовлетворяют алгебраическому уравнению 2 й степени. Среди линий второго порядка эллипсы (в частности, окружности), гиперболы, параболы … Большой Энциклопедический словарь

Плоские линии, прямоугольные координаты точек которых удовлетворяют алгебраическому уравнению 2 й степени. Среди линий второго порядка эллипсы (в частности, окружности), гиперболы, параболы. * * * ЛИНИИ ВТОРОГО ПОРЯДКА ЛИНИИ ВТОРОГО ПОРЯДКА,… … Энциклопедический словарь

Плоские линии, прямоуг. координаты точек к рых удовлетворяют алгебр. ур нию 2 й степени. Среди Л. в. п. эллипсы (в частности, окружности), гиперболы, параболы … Естествознание. Энциклопедический словарь

Плоская линия, декартовы прямоугольные координаты к рой удовлетворяют алгебраич. уравнению 2 й степени Уравнение (*) может и не определять действительного геометрич. образа, но для сохранения общности в таких случаях говорят, что оно определяет… … Математическая энциклопедия

Множество точек 3 мерного действительного (или комплексноро) пространства, координаты к рых в декартовой системе удовлетворяют алгебраич. уравнению 2 й степени (*) Уравнение (*) может и не определять действительного геометрич. образа, в таких… … Математическая энциклопедия

Слово это, весьма часто употребляемое в геометрии кривых линий, имеет не вполне определенное значение. Когда это слово применяется к незамкнутым и неразветвляющимся кривым линиям, то под ветвью кривой подразумевается каждая непрерывная отдельная… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Линии второго порядка, два диаметра, каждый из которых делит пополам хорды этой кривой, параллельные другому. С. д. играют важную роль в общей теории линий второго порядка. При параллельном проектировании эллипса в окружность его С. д.… …

Линии, которые получаются сечением прямого кругового Конуса плоскостями, не проходящими через его вершину. К. с. могут быть трёх типов: 1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия… … Большая советская энциклопедия

Линии, к рые получаются сечением прямого кругового конуса плоскостями, не проходящими через его вершину. К. с. могут быть трех типов: 1) секущая плоскость пересекает все образующие конуса в точках одной его полости (рис., а):линия пересечения… … Математическая энциклопедия

Раздел геометрии. Основными понятиями А. г. являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности второго порядка). Основными средствами исследования в А. г. служат метод координат (см. ниже) и методы… … Большая советская энциклопедия

Книги

  • Краткий курс аналитической геометрии , Ефимов Николай Владимирович. Предметом изучения аналитической геометрии являются фигуры, которые в декартовых координатах задаются уравнениями первой степени или второй. На плоскости — это прямые и линии второго порядка.…

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте №7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова..

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезокмалой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы. И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Любой эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-ой координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Мы сейчас покажем, что аффинная классификация кривых второго порядка дается самими наименованиями кривых, т. е. что аффинными классами кривых второго порядка являются классы:

пар действительных пересекающихся прямых;

пар мнимых (сопряженных) пересекающихся;

пар параллельных действительных прямых;

пар параллельных мнимых сопряженных прямых;

пар совпадающих действительных прямых.

Надо доказать два утверждения:

А. Все кривые одного наименования (т. е. все эллипсы, все гиперболы и т. д.) аффинно эквивалентны между собою.

Б. Две кривые различных наименований никогда не являются аффинно эквивалентными.

Доказываем утверждение А. В главе XV, § 3, уже было доказано, что все эллипсы аффинно эквивалентны одному из них, а именно окружности а все гиперболы — гиперболе Значит, все эллипсы, соответственно все гиперболы, аффинно эквивалентны между собою. Все мнимые эллипсы, будучи аффинно эквивалентны окружности — — 1 радиуса также аффинно эквивалентны между собою.

Докажем аффинную эквивалентность всех парабол. Мы докажем даже больше, а именно что все параболы подобны между собою. Достаточно доказать, что парабола, данная в некоторой системе координат своим каноническим уравнением

Для этого подвергнем плоскость преобразованию подобия с коэффициентом — :

Тогда так что при нашем преобразовании кривая

переходит в кривую

что и требовалось доказать.

Переходим к распадающимся кривым. В § формулы (9) и (11), стр. 401 и 402) было доказано, что кривая, распадающаяся на пару пересекающихся прямых, в некоторой (даже прямоугольной) системе координат имеет уравнение

Делая дополнительное преобразование координат

видим, что всякая кривая, распадающаяся на пару пересекающихся действительных, соответственно мнимых сопряженных, прямых, имеет в некоторой аффинной системе координат уравнение

Что касается кривых, распадающихся на пару параллельных прямых, то каждая из них может быть (даже в некоторой прямоугольной системе координат) задана уравнением

для действительных, соответственно

для мнимых, прямых. Преобразование координат позволяет в этих уравнениях положить (или для совпадающих прямых Отсюда следует аффинная эквивалентность всех распадающихся кривых второго порядка, имеющих одно и то же наименование.

Переходим к доказательству утверждения Б.

Заметим прежде всего: при аффинном преобразовании плоскости порядок алгебраической кривой остается неизменным. Далее: всякая распадающаяся кривая второго порядка есть пара прямых, а при аффинном преобразовании прямая переходит в прямую, пара пересекающихся прямых переходит в пару пересекающихся, а пара параллельных — в пару параллельных; кроме того, действительные прямые переходят в действительные, а мнимые — в мнимые. Это вытекает из того, что все коэффициенты в формулах (3) (гл. XI, § 3), определяющих аффинное преобразование, суть действительные числа.

Из сказанного следует, что линия, аффинно эквивалентная данной распадающейся кривой второго порядка, есть распадающаяся кривая того же наименования.

Переходим к нераспадающимся кривым. Опять-таки при аффинном преобразовании действительная кривая не может перейти в мнимую, и обратно. Поэтому класс мнимых эллипсов аффинно инвариантен.

Рассмотрим классы действительных нераспадающихся кривых: эллипсов, гипербол, парабол.

Среди всех кривых второго порядка всякий эллипс, и только эллипс, лежит в некотором прямоугольнике, тогда как параболы и гиперболы (равно как и все распадающиеся кривые) простираются в бесконечность.

При аффинном преобразовании прямоугольник ABCD, содержащий данный эллипс, перейдет в параллелограмм, содержащий преобразованную кривую, которая, таким образом, не может уходить в бесконечность и, следовательно, является эллипсом.

Итак, кривая, аффинно эквивалентная эллипсу, есть непременно эллипс. Из доказанного следует, что кривая, аффинно эквивалентная гиперболе или параболе, не может быть эллипсом (а также, как мы знаем, не может быть и распадающейся кривой. Поэтому остается лишь доказать, что при аффинном преобразовании плоскости гипербола не может перейти в параболу, и наоборот. Это, пожалуй, проще всего следует из того, что у параболы нет центра симметрии, а у гиперболы он есть. Но так как отсутствие центра симметрии у параболы будет доказано лишь в следующей главе, то мы сейчас дадим второе, тоже очень простое доказательство аффинной неэквивалентности гиперболы и параболы.

Лемма. Если парабола имеет общие точки с каждой из двух полуплоскостей, определяемых в плоскости данной прямой d, то она имеет хотя бы одну общую точку и с прямой .

В самом деле, мы видели, что существует такая система координат, в которой данная парабола имеет уравнение

Пусть относительно этой системы координат прямая d имеет уравнение

По предположению на параболе имеются две точки из которых одна, положим лежит в положительной, а другая, — в отрицательной полуплоскости относительно уравнения (1). Поэтому, помня, что можем написать

Понравилось?

Нажмите на кнопку, если статья Вам понравилась, это поможет нам развивать проект. Спасибо!

Приведите каноническое уравнение мнимого эллипса

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, равная 2 a .

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а сумму расстояний от произвольной точки эллипса до фокусов – через 2 a . По определению 2 a > 2 c , то есть a > c .

Выберем систему координат так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпадало с серединой отрезка F 1 F 2 . Тогда фокусы имют координаты: F 1 (– c ;0) и F 2 ( c ;0) . Пусть M ( x ; y ) – произвольная точка эллипса (текущая точка). Тогда по определению эллипса можно записать

По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:

Это уравнение равносильно первоначальному. Оно называется каноническим уравнением эллипса – кривой второго порядка .

Установим форму эллипса, пользуясь его каноническим уравнением.

1. Уравнение (2.17) содержит x и y только в четных степенях, поэтому если точка ( x ; y ) принадлежит эллипсу, то ему также принадлежат точки (– x ; y ), ( x ;– y ), (– x ;– y ) . Отсюда: эллипс симметричен относительно осей 0 x и 0 y , а также относительно точки O (0;0), которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат. Положив y = 0, найдем точки A 1 ( a ; 0) и A 2 (– a ; 0), в которых ось 0 x пересекает эллипс. Положив в уравнении (2.17) x = 0, находим точки пересечения эллипса с осью 0 y : B 1 (0; b ) и B 2 (0;– b ). Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса. Отрезки А1А2, В1В2, а также их длины 2 a и 2 b – соответственно большая и малая оси эллипса (рис. 2.4).

3. Из уравнения (2.17) следует, что каждое слагаемое в левой части не превосходит единицы, т.е.:

Следовательно, все точки эллипса лежат внутри прямоугольника, ограниченного прямыми x = ± a и y = ± b .

4. В уравнении (2.17) левая часть – сумма неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет уменьшаться, если | x | возрастает, | y | уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму овальной замкнутой кривой. Форма эллипса зависит от отношения . При a = b эллипс превращается в окружность, уравнение эллипса (2.17) принимает вид : x 2 + y 2 = a 2 . Отношение половины расстояния между фокусами к большой полуоси эллипса – эксцентриситет эллипса . Причем 0 ε 1, так как 0 c a .

Отсюда видно, что чем меньше эксцентриситет эллипса, тем будет менее эллипс сплющенным; при ε = 0 эллипс превращается в окружность.

Прямые директрисы эллипса.

Если r – расстояние от произвольной точки до какого–нибудь фокуса, d – расстояние от этой же точки до соответствующей этому фокусу директрисы (рис. 2.5), то отношение есть величина постоянная, равная эксцентриситету эллипса: .

Из равенства a 2 c 2 = b 2 следует, что a > b . Если же наоборот, то уравнение (2.17) определяет эллипс, большая ось которого 2 b лежит на оси 0 y , а малая ось 2 a – на оси 0 x . Фокусы такого эллипса находятся в точках F 1 (0; c ) и F 2 (0;– c ) , где . Данный эллипс будет растянут вдоль оси 0 y .

Пример 2.5. Составить уравнение линии, для каждой точки которой отношение расстояний от нее до точки A (3;0) и до прямой x = 12, равно числу ε =0,5 . Полученное уравнение привести к простейшему виду .

Решение . Пусть M ( x ; y ) – текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр MB на прямую . Тогда точка B( 12;y) . По условию задачи .

По формуле расстояния между двумя точками получаем:

Эксцентриситет эллипса

Примечание. Если эллипс (окружность) вращать вокруг одной из его осей, то описываемая им поверхность будет эллипсоидом вращения (сферой)

Пример 2.6. В геодезии используется система географических координат, основанная на понятии геоида. Геоид – поверхность Земли, ограниченная уровенной поверхностью, продолженной под континенты. Поверхность геоида отличается от физической поверхности Земли, на которой резко выражены горы и океанические впадины.

Тело, поверхность которого более всего соответствует поверхности геоида, имеет определенные размеры и ориентирована соответственно в теле Земли, называется референц–эллипсоидом. В нашей стране с 1946 года для всех геодезических работ принят референц–эллипсоид Красовского с параметрами a = 6 378 245 м, b = 6 356 863 м, α = 1: 298,3.

Линия, проходящая вертикально через центр эллипсоида является полярной осью. Линия, проходящая через центр эллипсоида, перпендикулярно к полярной оси, – экваториальной осью. При пересечении поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно к полярной оси, образуется окружность, называемая экватором. Окружность, полученная от пересечения поверхности эллипсоида плоскостью, параллельной плоскости экватора, называется параллелью. Линия пересечения поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную ось, называется меридианом данной точки. Положение точки на земной поверхности определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной линией называется географической широтой. Для определения долгот точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол λ, составленный плоскостью меридиана, проходящего через данную точку, и плоскостью начального меридиана, называется географической долготой

Гипербола – геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости – фокусов, есть величина постоянная, равная 2 a .

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а модуль разности расстояний от каждой точки гиперболы до фокусов через 2 a . По определению 2 a 2 c , то есть a c .

Выберем систему координат x 0 y так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпало с серединой отрезка F 1 F 2 . Тогда фокусы будут иметь координаты F 1( c ;0 ) и F 2 (– c ;0 ). На этой основе выведем уравнение гиперболы. Пусть M ( x ; y ) – ее произвольная точка . Тогда по определению | MF 1 MF 2 |= 2 a , то есть . Проведя преобразования, аналогичные упрощениям уравнения эллипса, получим каноническое уравнение гиперболы:

где b 2 = a 2 – c 2 . Гипербола линия 2–го порядка.

Установим форму гиперболы, исходя из ее канонического уравнения.

1. Уравнение (2.18) содержит x и y только в четных степенях. Следовательно, гипербола симметрична относительно осей координат 0 x и 0 y , и относительно точки O (0;0) – центра гиперболы.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (2.18) y =0 , находим две точки пересечения гиперболы с осью 0 x : A 1 ( a ; 0) и A 2 (– a ; 0).

Положив в (2.18) x = 0, получаем y 2 = – b 2 , чего быть не может. Т.е. гипербола ось 0 y не пересекает.

3. Из уравнения (2.18) следует, что уменьшаемое . Это означает, что точки гиперболы расположены справа от прямой x = a (правая ветвь гиперболы) и слева от прямой x =– a (левая ветвь) (рис. 2.6).

4. Из уравнения (2.18) гиперболы видно, что когда | x | возрастает, то | y | также возрастает . Это следует из того, что разность – сохраняет значение, равно e единице. Следовательно, гипербола имеет форму, состоящую из двух неограниченных ветвей.

Прямая L называется асимптотой некоторой неограниченной кривой , если расстояние d от точки M этой кривой до прямой L стремится к нулю при неограниченном удалении т очки M вдоль кривой от начала координат.

Покажем, что гипербола имеет две асимптоты: . Так как данные прямые и гипербола (2.18) симметричны относительно координатных осей, то достаточно рассмотреть только точки, расположенные в первой четверти.

Возьмем на прямой точку N , имеющую ту же абсциссу, что и точка M ( x ; y ) на гиперболе . Найдем разность | MN | :

Очевидно: так как числитель есть величина постоянная, а знаменатель дроби увеличивается с возравстанием переменной х, то длина отрезка | MN | стремится к нулю. Так как | MN | больше расстояния d от точки M до прямой L, то d стремится к нулю тем более ( и подавно) . Следовательно, прямые – есть асимптоты гиперболы (рис. 2.7).

Построение гиперболы начинают с нанесения ее основного прямоугольника на координатную плоскость. Далее проводят диагонали этого прямоугольника, которые являются асимптотами гиперболы, затем отмечают ее вершины, фокусы и строят ветви гиперболы .

Эксцентриситет гиперболы отношение расстояния между фокусами к величине её действительной оси, обозначается ε : . Так как у гиперболы c > a , то эксцентриситет ее больше единицы. Эксцентриситет характеризует форму гиперболы. Так как . Видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен . Действительно, . Фокальные радиусы , для точек правой ветви гиперболы имеют вид: r 1 = εx + a , r 2 = εx – a ; для точек левой ветви: r 1 =–( εx + a ), r 2 =–( εx – a ) .

Прямые называются директрисами гиперболы. Тот факт, что для гиперболы ε > 1, то означает : правая директриса расположена между центром и правой вершиной гиперболы, левая – между центром и левой вершиной. Директрисы гиперболы имеют тоже свойство , что и директрисы эллипса.

Уравнение определяет гиперболу с действительной осью 2 b , расположенной на оси 0 y , и мнимой осью 2 a, расположенной на оси абсцисс (подобная гипербола изображена на рисунке 2.7 пунктиром).

Значит , гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

Примечание. Если у кривой 2–го порядка смещен центр в некоторую точку O ( x 0 ; y 0 ) , то она называется нецентральной кривой. Уравнение такой кривой имеет вид:

Примечание. При вращении гиперболы вокруг ее действительной оси образуется двуполостный гиперболоид, вокруг ее мнимой оси – однополостный гиперболоид

Подробно данные уравнения рассмотрены в теме: «Исследование общего уравнения 2–ой степени» (смотри схему 10), частными случаями которого являются данные формулы.


источники:

http://school10-mgn.ru/mnimye-pryamye-linii-vtorogo-poryadka-ellips-i-ego-kanonicheskoe.html

http://www.sites.google.com/site/vyssaamatem/kupit-ucastok/ii-3-kanoniceskie-uravnenia-ellipsa-i-giperboly