Привести части уравнения к одному основанию

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.

Показательные уравнения. Как решать показательные уравнения?

Показательное уравнение – это уравнение c переменной в показателе степени.

Как решать показательные уравнения

При решении любое показательное уравнение мы стремимся привести к виду \(a^=a^\), а затем сделать переход к равенству показателей, то есть:

Важно! Из той же логики следуют два требования для такого перехода:
число в основании степени слева и справа должно быть одинаковым;
степени слева и справа должны быть «чистыми», то есть не должно быть никаких коэффициентов , умножений, делений и т.д.

В этом показательном уравнении переход к \(x+2= 8-x\) невозможен, так как в основаниях разные числа

Здесь переход к \(x+3x=2x\) также невозможен, так как слева стоит сумма.

И в этом случае перейти к \(5-x=7x\) нельзя, ведь справа есть минус.

Мы знаем, что \(27 = 3^3\). С учетом этого преобразуем уравнение.

Теперь вспомним, что: \(a^<-n>=\frac<1>\). Эту формулу можно использовать и в обратную сторону: \(\frac<1> =a^<-n>\). Тогда \(\frac<1><3>=\frac<1> <3^1>=3^<-1>\).

Применив свойство \((a^b )^c=a^\) к правой части, получим: \((3^ <-1>)^<2x>=3^<(-1)·2x>=3^<-2x>\).

И вот теперь у нас основания равны и нет никаких мешающих коэффициентов и т.д. Значит, можем делать переход.

Решаем получившееся линейное уравнение и пишем ответ.

Воспользуемся свойством степени \(a^b \cdot a^c=a^\) в обратном направлении.

\(2^x \cdot 2^3+2^x \cdot 2^2-2^x \cdot 2^1=160\)

Теперь в левой части выносим за скобку общий множитель \(2^x\) …

…и вычисляем содержимое в скобке.

Делим на \(10\) обе части уравнения…

…и дорешиваем до ответа.

Иногда одних только свойств степеней оказывается недостаточно, и приходиться применять стандартные приемы для решения более сложных уравнений – замену переменной , расщепление уравнения и т.д.

Вновь пользуемся свойством степени \(a^b \cdot a^c=a^\) в обратном направлении.

Теперь вспоминаем, что \(4=2^2\).

Смотрим внимательно на уравнение, и видим, что тут напрашивается замена \(t=2^x\).

Однако мы нашли значения \(t\), а нам нужны \(x\). Возвращаемся к иксам, делая обратную замену.

Преобразовываем второе уравнение, используя свойство отрицательной степени…

…и дорешиваем до ответа.

Остается вопрос — как понять, когда какой метод применять? Это приходит с опытом. А пока вы его не наработали, пользуйтесь общей рекомендацией для решения сложных задач – «не знаешь, что делать – делай, что можешь». То есть, ищите как вы можете преобразовать уравнение в принципе, и пробуйте это делать – вдруг чего и выйдет? Главное при этом делать только математически обоснованные преобразования.

Показательные уравнения, не имеющие решений

Разберем еще две ситуации, которые часто ставят в тупик учеников:
— положительное число в степени равно нулю, например, \(2^x=0\);
— положительное число в степени равно отрицательному числу, например, \(2^x=-4\).

Давайте попробуем решить перебором. Если икс — положительное число, то с ростом икса вся степень \(2^x\) будет только расти:

И так далее. Очевидно, что дальше увеличивать икс нет смысла, будет только «хуже» (т.е. мы будем удаляться от нуля и минус четверки).
Может быть нам поможет \(x=0\)? Проверяем:

Тоже мимо. Остаются отрицательные иксы. Вспомнив свойство \(a^<-n>=\frac<1>\), проверяем:

Несмотря на то, что число с каждым шагом становится меньше, до нуля оно не дойдет никогда. Так что и отрицательная степень нас не спасла. Приходим к логичному выводу:

Положительное число в любой степени останется положительным числом.

Таким образом, оба уравнения выше не имеют решений.

Показательные уравнения с разными основаниями

В практике порой встречаются показательные уравнения с разными основаниями, не сводимыми к друг к другу, и при этом с одинаковыми показателями степени. Выглядят они так: \(a^=b^\), где \(a\) и \(b\) – положительные числа.

Такие уравнения легко можно решить делением на любую из частей уравнения (обычно делят на правую часть, то есть на \(b^\). Так делить можно, потому что положительное число в любой степени положительно (то есть, мы не делим на ноль). Получаем:

Дальше решаем с помощью свойств степени.

Здесь у нас не получиться ни пятерку превратить в тройку, ни наоборот (по крайней мере, без использования логарифмов ). А значит мы не можем прийти к виду \(a^=a^\). При этом показатели одинаковы.
Давайте поделим уравнение на правую часть, то есть на \(3^\) (мы можем это делать, так как знаем, что тройка ни в какой степени не будет нулем).

Казалось бы, лучше не стало. Но вспомните еще одно свойство степени: \(a^0=1\), иначе говоря: «любое число в нулевой степени равно \(1\)». Верно и обратное: «единица может быть представлена как любое число в нулевой степени». Используем это, делая основание справа таким же как слева.

Вуаля! Избавляемся от оснований.

Иногда «одинаковость» показателей степени не очевидна, но умелое использование свойств степени решает этот вопрос.

Уравнение выглядит совсем печально… Мало того, что основания нельзя свести к одинаковому числу (семерка ни в какой степени не будет равна \(\frac<1><3>\)), так еще и показатели разные… Однако давайте в показателе левой степени вынесем за скобку двойку.

Аллилуйя! Показатели стали одинаковы!
Действуя по уже знакомой нам схеме, решаем до ответа.

Логарифмическое уравнение: решение на примерах

Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.

Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.

Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Вспоминаем определение логарифма и получаем следующее:Таким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом:В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:То есть в нашем случае:Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Воспользуемся этим свойством в нашем случае, получим:Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример:Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:После преобразования правой части наше уравнение принимает следующий вид:Теперь можно зачеркнуть логарифмы и тогда получим:Вспоминаем свойства степеней:

Теперь делаем проверку:то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения:Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Теперь преобразуем правую часть уравнения:Выполнив преобразования правой и левой частей уравнения, мы получили:Теперь мы можем зачеркнуть логарифмы:

Решим данное квадратное уравнение, найдем дискриминант:

Сделаем проверку, подставим х1 = 1 в исходное уравнение:Верно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Правильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Преобразуем правую часть нашего уравнения:

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Применяем эти знания и получаем:Но пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:

Тогда получим:Вот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Делаем проверку:Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Верно, следовательно, х = 4 является корнем уравнения.

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Преобразуем правую часть уравнения:Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Теперь мы можем зачеркнуть логарифмы:Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Сведем все требования в систему:

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Перепишем нашу систему:Следовательно, наша система примет следующий вид:Теперь решаем наше уравнение:Справа у нас квадрат суммы:Данный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Т.к. 3 2 =9, то последнее выражение верно.

Как сделать проверку

Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.

Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:

После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!

Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.


источники:

http://cos-cos.ru/math/145/

http://yourrepetitor.ru/kak-reshit-logarifmicheskoe-uravnenie/