Привести уравнение к стандартному виду онлайн

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Упрощение многочлена.
Умножение многочленов.

С помощью данной математической программы вы можете упростить многочлен.
В процессе работы программа:
— умножает многочлены
— суммирует одночлены (приводит подобные)
— раскрывает скобки
— возводит многочлен в степень

Программа упрощения многочленов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы вы могли проконтролировать свои знания по математике и/или алгебре.

Данная программа может быть полезна учащимся общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Немного теории.

Произведение одночлена и многочлена. Понятие многочлена

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\( 5a^4 — 2a^3 + 0,3a^2 — 4,6a + 8 \)
\( xy^3 — 5x^2y + 9x^3 — 7y^2 + 6x + 5y — 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\( 8b^5 — 2b \cdot 7b^4 + 3b^2 — 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\( 8b^5 — 2b \cdot 7b^4 + 3b^2 — 8b + 0,25b \cdot (-12)b + 16 = \)
\( = 8b^5 — 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\( 8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида.

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \( 12a^2b — 7b \) имеет третью степень, а трехчлен \( 2b^2 -7b + 6 \) — вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\( 5x — 18x^3 + 1 + x^5 = x^5 — 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\( 9a^2b(7a^2 — 5ab — 4b^2) = \)
\( = 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\( = 63a^4b — 45a^3b^2 — 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \( (a + b)^2, \; (a — b)^2 \) и \( a^2 — b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \( (a + b)^2 \) — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \( (a + b)^2, \; (a — b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\( (a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\( = a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\( (a + b)^2 = a^2 + b^2 + 2ab \) — квадрат суммы равен сумме квадратов и удвоенного произведения.

\( (a — b)^2 = a^2 + b^2 — 2ab \) — квадрат разности равен сумме квадратов без удвоенного произведения.

\( a^2 — b^2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Привести уравнение к стандартному виду онлайн

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

Сервис (своего рода программа для классов 5 и 7, 8, 9, 10, 11) позволяет упрощать математические выражения: алгебра (алгебраические выражения), тригонометрических выражений, выражения с корнями и другими степенями, сокращение дробей, также упрощает сложные буквенные выражения,
для упрощение комплексных выражений вам сюда(!)

Важно В выражениях переменные обозначаются ОДНОЙ буквой! Например, a, b, . z

© Контрольная работа РУ — калькуляторы онлайн

Где учитесь?

Для правильного составления решения, укажите:

Стандартный вид многочлена

Калькулятор отображает многочлен нескольких переменных в стандартном виде. Есть возможность выбрать порядок одночленов.

Калькулятор далее представляет входной многочлен нескольких переменных в стандартном виде (раскрывает скобки, возводит в степень и приводит подобные члены). Переменные многочлена можно задать строчными английскими буквами или в виде мультииндекса (массива степеней переменных). Например, записи 3a^2bd +c и 3[2 1 0 1] + [0 0 1] эквивалентны. Вывод результата возможен в виде буквенной и индексной записях, либо в также в виде мультииндекса. Также выводится степень многочлена и вектор степеней одночленов. Коэффициенты результирующего многочлена рассчитываются в поле рациональных или вещественных чисел.

Стандартный вид многочлена

Одночлен

Одночлен представляет собой произведение переменных xi в степени ai, где ai — целое неотрицательное число:

Если переменных не так много, то вместо индексной записи можно записывать все переменные при помощи отдельных латинских букв:
например, x1 2 x2 или x 2 y — эквивалентные записи одночлена двух переменных.
Вектор, составленный из показателей степеней одночлена называется мультииндекс:

Пример: мультииндекс одночлена x 2 y 3 z = (2,3,1)
Степенью одночлена называется сумма всех показателей степеней переменных этого одночлена:

Например, степень одночлена: x 2 y 3 z равна 2+3+1 = 6

Многочлен

Многочлен в стандартном виде это конечная сумма одночленов помноженных на коэффициенты:

Степенью многочлена deg(f) называется максимальная степень |a| всех одночленов многочлена, с ненулевыми коэффициентами.
В отличие от многочленов одной переменной, многочлены многих переменных могут иметь несколько одночленов с одинаковой степенью.
В связи с этим возникает вопрос определения порядка на множестве членов многочлена.

Порядок членов многочлена 1

Известно несколько способов задания порядка членов многочлена.

Лексикографический порядок

Наиболее простой порядок — лексикографический. В этом случае самая левая ненулевая координата вектора, полученного вычитанием мультииндексов сравниваемых одночленов положительна:
_x^ <\beta>\Leftarrow <\alpha>><\beta>» />
Пример лексикографического сравнения:
_ x^<\beta>=x^2y^2z^3, \\\alpha-\beta=(2,3,1)-(2,2,3)=(0,1,-2) » />
Первый одночлен x α больше второго x β , так как при вычитании мультииндексов первая ненулевая координата (0,1,-2) положительна.

Градуированный лексикографический порядок

Градуированный лексикографический порядок определяется в первую очередь степенью одночлена, если степень больше, то и одночлен считается больше. В случае равных степеней используется лексикографическое сравнение:
_x^ <\beta>\Leftarrow \begin \mid<\alpha>\mid>\mid<\beta>\mid \\ \mid<\alpha>\mid=\mid<\beta>\mid, <\alpha>> <\beta>\end» />
Примеры градуированного лексикографического сравнения:
а)
_ x^<\alpha>=x^2y^3z , \\ \mid\beta\mid = 7 > \mid\alpha\mid=6″ />
Одночлен x β больше чем x α , так как степень |β|=7 больше степени |α|=6.
б)
_ x^<\gamma>=xy^5 , \\ \mid\alpha\mid = \mid\gamma\mid=6, <\alpha>> <\gamma>» />
Одночлен x α больше чем x γ , так как степени равны, но лексикографически первый одночлен больше второго.

Градуированный обратный лексикографический порядок

Градуированный обратный лексикографический порядок сходен с предыдущим в том, что в первую очередь он определяется степенью одночлена, если степень больше, то и одночлен считается больше. В случае равных степеней, одночлен больше, если самая правая ненулевая координата вектора, полученного вычитанием мультииндексов сравниваемых одночленов отрицательна.
Примеры градуированного обратного лексикографического сравнения:
а)
_ x^<\alpha>=x^2y^3z , \\ \mid\beta\mid = 7 > \mid\alpha\mid=6″ />
Одночлен x β больше чем x α , так как степень |β|=7 больше степени |α|=6.
б)
_ x^<\alpha>=x^2y^3z , \\ \mid\alpha\mid = \mid\gamma\mid=6, <\gamma>—<\alpha>=(1,5,0)-(2,3,1)=(-1,2,-1) » />
Одночлен x γ больше чем x α , так как степени равны, но при вычитании мультииндексов самая правая ненулевая координата вектора разницы мультииндексов (-1,2,-1) отрицательна.

Д. Кокс, О. Литл, Д. О’Ши Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. Пер. с английского. М.: Мир 2000 ↩


источники:

http://www.kontrolnaya-rabota.ru/s/equal-one/uproschenie-vyirazhenij/

http://planetcalc.ru/9351/