Привести уравнение второго порядка ортогональным преобразованием

Приведение кривой второго порядка к каноническому виду

Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.

Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.

Алгоритм перехода кривой второго порядка к каноническому виду

Пример №1 . 4y=-6-sqrt(4x-x 2 )
sqrt(4x-x 2 ) = -(4y+6)
Возведем в квадрат
4x-x 2 = (4y+6) 2
Раскрывая скобки, получаем:
16y 2 +48y + 36 +x 2 -4x = 0

Далее решается калькулятором. Если самостоятельно решать, то получим:
4x-x 2 = (4y+6) 2
-(x 2 — 4x) = 2(y+3/2) 2
-(x 2 — 4x + 4) = (y+3/2) 2
-(x — 2) 2 = (y+3/2) 2
(y+3/2) 2 + (x — 2) 2 = 0

Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
Здесь надо сначала привести к нормальному виду.
3/2(x-1)=sqrt(y 2 -4y-5)
Возводим в квадрат
9/4(x-1) 2 =y 2 -4y-5
9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
9/4x 2 -9/2x-y 2 +4y+29/4=0

Далее можно решать как с калькулятором, так и без него:
9/4(x-1) 2 =y 2 -4y-5
9/4(x-1) 2 =y 2 -4y+4-4-5
9/4(x-1) 2 =(y 2 -2)-9
9/4(x-1) 2 -(y 2 -2) = -9
-1/4(x-1) 2 +1/9(y 2 -2) = 1

69. Квадратичные формы и их приведение к каноническому виду

При рассмотрении евклидового пространства мы вводили определение квадратичной формы. С помощью некоторой матрицы

Строится многочлен второго порядка вида

Который называется квадратичной формой, порождаемой квадратной матрицей А.

Квадратичные формы тесно связаны с поверхностями второго порядка в n — мерном евклидовом пространстве. Общее уравнение таких поверхностей в нашем трехмерном евклидовом пространстве в декартовой системе координат имеет вид:

Верхняя строка — это не что иное, как квадратичная форма, если положить x1=x, x2=y, x3=z:

— симметричная матрица (aij = aji)

Положим для общности, что многочлен

Есть линейная форма. Тогда общее уравнение поверхности есть сумма квадратичной формы, линейной формы и некоторой постоянной.

Основной задачей теории квадратичных форм является приведение квадратичной формы к максимально простому виду с помощью невырожденного линейного преобразования переменных или, другими словами, замены базиса.

Вспомним, что при изучении поверхностей второго порядка мы приходили к выводу о том, что путем поворота осей координат можно избавиться от слагаемых, содержащих произведение xy, xz, yz или xixj (i¹j). Далее, путем параллельного переноса осей координат можно избавиться от линейных слагаемых и в конечном итоге свести общее уравнение поверхности к виду:

В случае квадратичной формы приведение ее к виду

Называется приведением квадратичной формы к каноническому виду.

Поворот осей координат есть не что иное, как замена одного базиса другим, или, другими словами, линейное преобразование.

Запишем квадратичную форму в матричном виде. Для этого представим ее следующим образом:

L(x, y,z) = x(a11x+a12y+a13z)+

Введем матрицу — столбец

Тогда — где X T =(x, y,z)

— матричная форма записи квадратичной формы. Эта формула, очевидно, справедлива и в общем случае:

Канонический вид квадратичной формы означает, очевидно, что матрица А имеет диагональный вид:

Рассмотрим некоторое линейное преобразование X = SY, где S — квадратная матрица порядка n, а матрицы — столбцы Х и У есть:

Матрица S называется матрицей линейного преобразования. Отметим попутно, что всякой матрице n-ного порядка при заданном базисе соответствует некоторый линейный оператор.

Линейное преобразование X = SY заменяет переменные x1, x2, x3 новыми переменными y1, y2, y3. Тогда:

где B = S T A S

Задача приведения к каноническому виду сводится к отысканию такой матрицы перехода S, чтобы матрица В приобрела диагональный вид:

(*)

Итак, квадратичная форма с матрицей А после линейного преобразования переменных переходит в квадратичную форму от новых переменных с матрицей В.

Обратимся к линейным операторам. Каждой матрице А при заданном базисе соответствует некоторый линейный оператор А. Этот оператор имеет, очевидно, некоторую систему собственных чисел и собственных векторов. Причем, отметим, что в евклидовом пространстве система собственных векторов будет ортогональна. Мы доказывали на предыдущей лекции, что в базисе собственных векторов матрица линейного оператора имеет диагональный вид. Формула (*), как мы помним, это формула преобразования матрицы линейного оператора при смене базиса. Положим, что собственные вектора линейного оператора А с матрицей А — это вектора у1, y2, . yn.

Т. е.

А это означает, что если собственные вектора у1, y2, . yn взять за базис, то матрица линейного оператора в этом базисе будет диагональной

Или В = S-1 А S, где S – матрица перехода от первоначального базиса <E> к базису <Y>. Причем в ортонормированном базисе матрица S будет ортогональной.

Т. о. для приведения квадратичной формы к каноническому виду необходимо найти собственные числа и собственные векторы линейного оператора А, имеющего в первоначальном базисе матрицу А, которая порождает квадратичную форму, перейти к базису собственных векторов и в новой системе координат построить квадратичную форму.

Обратимся к конкретным примерам. Рассмотрим линии второго порядка.

или

С помощью поворота осей координат и последующего параллельного переноса осей это уравнение можно привести к виду ( переменные и коэффициенты переобозначены х1 = х, х2 = у):

1) если линия центральная, l1 ¹ 0, l2 ¹ 0

2) если линия нецентральная, т. е. один из li = 0.

Напомним виды линий второго порядка. Центральные линии:

1) эллипс;

2) гипербола;

3) точка;

4) две пересекающиеся прямые.

5) х2 = а2 две параллельные линии;

6) х2 = 0 две сливающиеся прямые;

7) у2 = 2рх парабола.

Для нас представляют интерес случаи 1), 2), 7).

Рассмотрим конкретный пример.

Привести к каноническому виду уравнение линии и построить ее:

5х2 + 4ху + 8у2 — 32х — 56у + 80 = 0.

Матрица квадратичной формы есть . Характеристическое уравнение:

Его корни:

Найдем собственные векторы:

При l1 = 4: u1 = -2u2; u1 = 2c, u2 = — c или g1 = c1(2IJ).

При l2 = 9: 2u1 = u2; u1 = c, u2 = 2c или g2 = c2(I+2J).

Нормируем эти векторы:

Составим матрицу линейного преобразования или матрицу перехода к базису g1, g2:

— ортогональная матрица!

Формулы преобразования координат имеют вид:

или

Подставим в наше уравнение линии и получим:

Сделаем параллельный перенос осей координат. Для этого выделим полные квадраты по х1 и у1:

Обозначим . Тогда уравнение приобретет вид: 4х22 + 9у22 = 36 или

Это эллипс с полуосями 3 и 2. Определим угол поворота осей координат и их сдвиг для того, чтобы построить эллипс в старой системе.


Построим:

Проверка: при х = 0: 8у2 — 56у + 80 = 0 у2 – 7у + 10 = 0. Отсюда у1,2 = 5; 2

При у =0: 5х2 – 32х + 80 = 0 Здесь нет корней, т. е. нет точек пересечения с осью Х!

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Приведение квадратичной формы к каноническому виду.

Приведение квадратичной формы к каноническому виду.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Метод собственных векторов:

Рассмотрим квадратичную форму $A(x,x) =\sum\limits_^na_x_ix_j$ в евклидовом пространстве $R^n.$ Так как ее матрица $A=(a_ij)$ симметрична, то она может быть представлена в виде $A=UDU^,$ где $D -$ диагональная матрица, на диагонали которой стоят собственные числа матрицы, а $U -$ ортогональная матрица. Столбцы матрицы $U$ являются координатами некоторого ортонормированного базиса $B’=(e_1, . e_n),$ в котором матрица $A$ имеет диагональный вид $D,$ и, следовательно, квадратичная форма — искомый канонический вид. Соответствующие преобразования координат определяются соотношением $$\beginx_1\\\vdots\\x_n\end=U\beginx_1’\\\vdots\\x_n’\end.$$

Пример.

Найти ортогональное преобразование, приводящее следующие формы к каноническому виду, и написать этот канонический вид:

4.213. $11x_1^2+5x_2^2+2x_3^2+16x_1x_2+4x_1x_3-20x_2x_3.$

Решение.

Матрица квадратичной формы имеет вид $$\begin11&8&2\\8&5&-10\\2&-10&2\end.$$

Найдем собственные числа этой матрицы. Для этого запишем характеристическое уравнение:

$$det(A-\lambda E)=\begin11-\lambda&8&2\\8&5-\lambda&-10\\2&-10&2-\lambda\end=$$ $$=(11-\lambda)(5-\lambda)(2-\lambda)+2\cdot 8\cdot (-10)+2\cdot 8\cdot (-10)-$$ $$-2\cdot(5-\lambda)\cdot 2-(11-\lambda)\cdot(-10)\cdot(-10)-8\cdot 8\cdot(2-\lambda)=$$ $$=-\lambda^3+\lambda^2(2+5+11)-\lambda(10+22+55)+110-160-160-20+$$ $$+4\lambda-1100+100\lambda-128+64\lambda=$$ $$=-\lambda^3+18\lambda^2+81\lambda-1458=-\lambda(\lambda^2-81)+18(\lambda^2-81)=$$ $$=(\lambda-9)(\lambda+9)(-\lambda+18)=0.$$

Отсюда находим собственные числа:

$$\lambda_1=9,\quad \lambda_2=-9, \quad\lambda_3=18.$$

Далее находим собственные вектора:

Собственный вектор для собственного числа $\lambda_1=9$ найдем из системы $$(A-\lambda E)X=0, X\neq 0, \Rightarrow (A-9E)X=0, X\neq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=\begin2&8&2\\8&-4&-10\\2&-10&-7\end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=\begin2&8\\8&-4\end=-8-64=-72\neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=\begin2&8\\8&-4\end=-72\neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$\left\<\begin2x_1+8x_2+2c=0\\ 8x_1-4x_2-10c=0\end\right.\Rightarrow\left\<\begin2x_1+8x_2=-2c\\8x_1-4x_2=10c\end\right.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=\beginc\\-c/2\\c\end.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=\begin1\\-1/2\\1\end.$

Собственный вектор для собственного числа $\lambda_2=-9$ найдем из системы $$(A-\lambda E)X=0, X\neq 0, \Rightarrow (A+9E)X=0, X\neq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=\begin20&8&2\\8&14&-10\\2&-10&11\end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=\begin20&8\\8&14\end=280-64=216\neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=\begin20&8\\8&14\end=216\neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$\left\<\begin20x_1+8x_2+2c=0\\ 8x_1+14x_2-10c=0\end\right.\Rightarrow\left\<\begin20x_1+8x_2=-2c\\8x_1+14x_2=10c\end\right.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=\begin-c/2\\c\\c\end.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=\begin-1/2\\1\\1\end.$

Собственный вектор для собственного числа $\lambda=18$ найдем из системы $$(A-\lambda E)X=0, X\neq 0, \Rightarrow (A-18E)X=0, X\neq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=\begin-7&8&2\\8&-13&-10\\2&-10&-16\end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=\begin-7&8\\8&-13\end=91-64=27\neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=\begin-7&8\\8&-13\end=27\neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$\left\<\begin-7x_1+8x_2+2c=0\\ 8x_1-13x_2-10c=0\end\right.\Rightarrow\left\<\begin-7x_1+8x_2=-2c\\8x_1-13x_2=10c\end\right.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=\begin-2c\\-2c\\c\end.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=\begin-2\\-2\\1\end.$

Таким образом, мы нашли вектора

В базисе $B’=(e_1′, e_2′, e_3′)$ заданная квадратичная форма имеет вид $$A(x, x)=9x_1^2-9x_2^2+18x_3^2,$$ а соответствующее преобразование координат:

Ответ: $A(x, x)=9x_1^2-9x_2^2+18x_3^2;$


источники:

http://matica.org.ua/metodichki-i-knigi-po-matematike/kurs-lektcii-po-lineinoi-algebre-i-analiticheskoi-geometrii/69-kvadratichnye-formy-i-ikh-privedenie-k-kanonicheskomu-vidu

http://mathportal.net/index.php/analiticheskaya-geometriya/privedenie-kvadratichnoj-formy-k-kanonicheskomu-vidu