Проект методы решения показательных уравнений

Исследовательский проект «Решение показательных уравнений с параметрами»

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры учащегося, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение с параметрами представляет собой целый класс обычных уравнений, для каждого из которых должно быть получено решение. Такие задачи предлагаются на едином государственном экзамене. По итогам ЕГЭ разных лет можно сделать вывод, что решение задач с параметрами вызывает наибольшею трудность у учащихся. Цель моего исследования: поиск оптимальных способов решения показательных уравнений с параметрами. Исследовательская составляющая моего проекта содержит решение показательных уравнений с параметрами, анализ корней в зависимости от параметра, решение вопроса о рациональности выбранного способа решения.

Скачать:

ВложениеРазмер
https://nsportal.ru/sites/default/files/2019/02/09/proekt_2.docx153.44 КБ

Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

Самарской области гимназия города Сызрани городского округа Сызрань

«Решение показательных уравнений с параметрами»

Секция «Математика»

Автор исследовательской работы:
учащаяся 11 класса,
Дуплищева Анна
Научный руководитель:
Константинова Ирина Альбертовна

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры учащегося, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение с параметрами представляет собой целый класс обычных уравнений, для каждого из которых должно быть получено решение. Такие задачи предлагаются на едином государственном экзамене. По итогам ЕГЭ разных лет можно сделать вывод, что решение задач с параметрами вызывает наибольшею трудность у учащихся. По данным Рособрнадзора около 87.9% не приступают к выполнению данного типа заданий.

Эти задачи представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков.

Цель моего исследования: поиск оптимальных способов решения показательных уравнений с параметрами. При этом я использовала следующие методы.

  1. Изучение учебной литературы.
  2. Использование информационных ресурсов (интернет).
  3. Обобщение и систематизация материала по данной теме.
  4. Анализ условий задач и полученного результата.

Исследовательская составляющая моего проекта содержит решение показательных уравнений с параметрами, анализ корней в зависимости от параметра, решение вопроса о рациональности выбранного способа решения.

2. Основная часть

Уравнение 2 9-10

Уравнение 3 10-11

Уравнение 4 12-13

3. Заключение 14

4. Библиографический список 15

Актуальность выбранной темы :

  1. Необходимость подготовки к итоговой аттестации, т.к. одним из важных проверяемых элементов содержания является умение решать уравнения, составляя математическую модель.
  2. Необходимость применений знаний в современной жизни, анализ заданий с изменяющимися условиями.

Проблема исследования : систематизация способов решения показательных уравнений с параметрами.

Объект исследования : показательные уравнения.

Предмет исследования : условия, при которых решения показательных уравнений с параметрами будет рациональным.

Цель исследования : поиск оптимальных способов решения показательных уравнений с параметрами.

  1. Использовать знания теорий показательных уравнений для решения показательных уравнений с параметрами.
  2. Рассмотреть графический и аналитический способы решения и выяснить, какой из них является наиболее рациональным.
  3. Выработать рекомендации к решению уравнений с параметрами для ознакомления с ними обучающихся.

Гипотеза: является ли аналитический способ решения наиболее рациональным.

Теоретические основы решения уравнений с параметрами

Уравнение, в котором переменная содержится в показателе степени, называется показательным. Это уравнение относительно показательной функции, т.е. функции вида . При решении показательных уравнений используется свойство показательной функции.

Свойства показательной функции:

  1. Область определения:
    все действительные числа
  1. Множество значений:
    все положительные числа
  1. При а > 1 функция возрастающая;
    при 0

Параметр — величина, значения которой служат для различения групп элементов некоторого множества между собой. Например, уравнение y = kx + b задаёт множество прямых на плоскости, k и b в данном случае — параметры прямой, то есть, если предположить, допустим, что k = 2 и b = 7, мы получим конкретную прямую y = 2x + 7: один из элементов множества.

Под термином «уравнение с параметром», фактически, скрывается целое семейство «почти одинаковых уравнений» , которые отличаются друг от друга только одним числом (одним слагаемым или одним коэффициентом) и одинаково решаются. Параметр — это число, которое меняется от уравнения к уравнению. В уравнениях с параметрами параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня чётной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

При решении уравнений с параметрами надо сделать то, что делается при решении любого уравнения или неравенства – привести заданные уравнения к более простому виду.

Тип 1. Уравнения, которые необходимо решить для всех значений параметра или для значения параметра из заданного промежутка.

Тип 2. Уравнения, где требуется найти количество решений в зависимости от значений параметра.

Тип 3. Уравнения, где необходимо найти значения параметра, при которых задача имеет заданное количество решений.

Тип 4. Уравнения, в которых необходимо найти значения параметра, при которых множество решений удовлетворяет заданным условиям.

В данной работе рассматриваются показательные уравнения с параметрами и определённые алгоритмы, которые могут помочь в решении столь нелёгких заданий.

Проект методы решения показательных уравнений

Из предложенных тем я выбрала: «Методы решения показательных уравнений и неравенств», так как она наиболее актуальна не только для меня, но и для детей моего возраста. В связи с приближающимися экзаменами, данный проект так же поможет мне при решении заданий из ЕГЭ.

В данной работе исследуются разные способы решений показательных уравнений и неравенств.

В процессе выполнения проекта я приобрела навыки проектной деятельности, развила коммуникативные и аналитические способности, а также навыки самостоятельного поиска необходимого материала с помощью учебной и художественной литературы и интернет­-источников, более того получила знания как по математики, так и по истории.

Для достижения цели исследовательской работы необходимо было решить следующие задачи:

— осваивание математических знаний и умений, необходимых для изучения школьных естественнонаучных дисциплин на базовом уровне.

-изучить различные методы решения показательных уравнений и неравенств.

— развитие логического мышления и алгоритмической культуры;

Обычно математику считают прямой противоположностью поэзии. Однако математика и поэзия — ближайшие родственники, ведь и то и другое — работа воображения.
Томас Хилл

Определенно, чтобы понять и научиться решать любые математические задания, мало просто знать все многочисленные формулы и свойства, которыми богата данная наука. Если не подходить к заданию творчески, широко и открыто мыслить, то легко попадешь «в тупик», что может привести не только к разочарованию в науке, но и в самом себе. Математика как игра привлекательна свое содержательностью, сложностью и неожиданностью результатов. Так же для овладения почти любой современной профессии требуются математические познания. Строгое и абстрактное мышление, необходимое в реальной действительности, легче развить, занимаясь математикой, поскольку эта наука строга и абстрактна. Именно поэтому, на примере решения показательных уравнений и неравенств, я хочу показать, что данный процесс может не только увлечь вас, но и так же заставить ваш мозг работать куда продуктивнее.

История Показательных уравнений

Термин «показатель» для степени ввел в 1553 г. немецкий математик (сначала монах, а затем − профессор) Михаэль Штифель (1487-1567). По-немецки показатель − Exponent: «выставлять напоказ». Штифель же ввел дробные и нулевой показатели степени. Само обозначение ax для натуральных показателей степени ввел Рене Декарт (1637 г.), а свободно обращаться с такими же дробными и отрицательными показателями стал с 1676 г. сэр Исаак Ньютон.
Степени с произвольными действительными показателями, без всякого общего определения, рассматривали и Готфрид Вильгельм Лейбниц, и Иоганн Бернулли; в 1679 г. Лейбниц ввел понятия экспоненциальной (т.е., по-русски, показательной) функции для зависимости y=ax и экспоненциальной кривой для графика этой функции.

Уравнение, которое содержит неизвестное в показателе степени, называется показательным уравнением.

Самое простое показательное уравнение имеет вид:

Показательные уравнения путём алгебраических преобразований приводят к стандартным уравнениям, которые решаются, используя следующие методы:

  • метод приведения к одному основанию;
  • метод введения новых переменных;
  • метод вынесения общего множителя за скобки;
  • метод почленного деления;
  • метод группировки;
  • метод оценки.

Метод приведения к одному основанию

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду:

Представим правую часть в виде 3 log 3 7 x+1 3 2x-1 = 3 log 3 7 x+1 2x-1= log 3 7 x+1 2x-1=x log 3 7 1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png» /> + log 3 7 x(2- log 3 7 1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png» /> )= log 3 7 x= 1+ log 3 7 2- log 3 7 x= log 3 3+ log 3 7 log 3 3 2 — log 3 7 x= log 3 21 log 3 9 7 x= log 9 7 21 ≈12.1144 Ответ: 12.1144 4 x 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image012.png» /> — 2 x 2 Обозначим t= 2 x 2 t 2 t 1 t 2 Так как -1 2 x 2 x 2

Из первого уравнения совокупности находим x1 = — 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image019.png» /> ,x2= 1 2 x — 1= x — 3 +2 x — 3= x — 3 x — 3= x — 3, если x ≥3 x — 3=- x +3, если x 0∙ x =0, если x ≥3 2 x =6, x =3, если x Ответ: — 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image025.png» /> ∪ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.png» /> 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image027.png» /> ∪ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.png» /> 3; +∞ 22х·2– 7·2х·5х+52х·5=0 /52х≠ 0
2· 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> 2х– 7· 2 5 Пусть 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х =t, t>0
2t2-7t+5=0
D=b2-4ac=49-4·2·5=9
t1=1, t2= 5 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image030.png» />
2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х=1, 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х = 5 2 3·22х+ 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х+1– 6·4х+1= — 1 3 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х+1+ 1 3 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х·9+ 1 3 31,5= 21· 4 9 4 9 1\AppData\Local\Temp\msohtmlclip1\01\clip_image032.png» /> х= 3 2 2 3 1\AppData\Local\Temp\msohtmlclip1\01\clip_image034.png» /> 2х= 2 3 ( 5 ) 2+4+6+. +2 x 1\AppData\Local\Temp\msohtmlclip1\01\clip_image035.png» /> = 5 45 1 2 Sn =n( a 1 + a n 2 x 1+ x 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image038.png» /> =45 2 x — 3 ≥ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image040.png» /> 4+ 1 6- 2 x — 3 Пусть 2 x — 3 t ≥ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image043.png» /> 4+ 1 6- t 4+ 1 6- t 1\AppData\Local\Temp\msohtmlclip1\01\clip_image045.png» /> – t ≤ t 2 — 10 t +25 6- t ≤ (t-5) 2 6-t ≤ t=5, t > 1\AppData\Local\Temp\msohtmlclip1\01\clip_image049.png» /> 6. Отсюда 2 x — 3 1\AppData\Local\Temp\msohtmlclip1\01\clip_image042.png» /> =5 и 2 x — 3 > Пусть 2 x Из уравнения a-3 a-3=5 a-3=-5 a=8 a=-2 Подставим вместо a= 2 x 2 x =8 2 x =-2 Модуль a — 3 Для решения неравенств a — 3 > a — 3 > 1\AppData\Local\Temp\msohtmlclip1\01\clip_image056.png» /> 6 получаем a 1\AppData\Local\Temp\msohtmlclip1\01\clip_image057.png» /> -3 или a > 2 x 2 x >9 2 x > 2 log 2 9 x > log 2 9 Ответ: <3>∪ ( log 2 9 2 (3 2x + 2 x ∙ 3 x+1 + 3 0 ) > 3 (4 x — 2 x ∙ 3 x+1 + log 3 2) 3 2x + 2 x ∙ 3 x +1> log 2 3 (4 x — 2 x ∙ 3 x+1 + log 3 2) 3 2x + 2 x ∙ 3 x +1> (4 x — 2 x ∙ 3 x+1 + log 3 2)∙ log 2 3 3 2x + 2 x ∙ 3 x +1> (4 x — 2 x ∙ 3 x+1 )∙ log 2 3 +1 3 2x + 2 x ∙ 3 x > (4 x — 2 x ∙ 3 x+1 )∙ log 2 3 Поделим каждое слагаемое неравенства на ( 2 x ∙ 3 x ) 3 2 x +1> 2 3 x — 3 ∙ log 2 3 Обозначим: 3 2 x 1\AppData\Local\Temp\msohtmlclip1\01\clip_image069.png» /> =y, где y > y+1 > 1 y — 3 ∙ log 2 3 y 2 +y> 1-3y ∙ log 2 3 y 2 +y- 1-3y ∙ log 2 3 >0 y 2 +y — log 2 3+3y log 2 3 >0 y 2 + 3 log 2 3 +1 y- log 2 3 >0 y 2 + 3 log 2 3 +1 y- log 2 3=0 D = 3 log 2 3 +1 1\AppData\Local\Temp\msohtmlclip1\01\clip_image076.png» /> 2 + 1\AppData\Local\Temp\msohtmlclip1\01\clip_image077.png» /> 4 log 2 3= 9 log 2 3 2 +10 log 2 3 +1 D >0 y = — 3 log 2 3 +1 ± 9 log 2 3 2 +10 log 2 3 +1 2 В связи с тем, что log 2 3 >0 1\AppData\Local\Temp\msohtmlclip1\01\clip_image081.png» /> , то и D > 3 log 2 3 +1 y = — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 Отметим точку y на оси, y >0 y Î — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ Из этого следует, что x Î log 3 2 — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ Ответ: x Î log 3 2 — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2

В ходе беседы выявляется характерная особенность этих уравнений – переменная находится в показателе степени. Далее учащимся на интерактивной доске предлагается задание, направленное на «узнавание» показательных уравнений. Анимация настроена так, что при верном выборе уравнение увеличивается в размере.

Выберите показательные уравнения:

Учащиеся выбирают уравнения №№ 2, 3, 4, 6, 8, эти уравнения предлагается записать в тетрадь для решения дома.

2. Способы решения показательных уравнений

Выделяют две группы способов: графический и аналитические.

2.1. Вспомним суть графического способа решения уравнений:

  1. Построить графики двух функций (левая и правая части уравнения);
  2. Найти абсциссы точек пересечения графиков;
  3. Записать ответ.

Рассмотрим графический способ решения на примере уравнения 2 x = 4 Построим графики функций y = 2 x , y = 4 и найдем абсциссу точки пересечения графиков: x = 2.

Графический способ можно применить не всегда, поэтому рассмотрим более универсальные основные аналитические способы решения показательных уравнений.

2.2. Аналитические способы:

  1. Приравнивание показателей;
  2. Вынесение общего множителя за скобки;
  3. Введение новой переменной;
  4. Использование однородности.

Рассмотрим каждый способ подробнее и разберем на примере.

2.2.1. Приравнивание показателей.

1. Уединить слагаемое, содержащее переменную;
2. Привести степени к одному основанию;
3. Приравнять показатели;
4. Решить полученное уравнение;
5. Записать ответ.


2.2.2. Вынесение общего множителя за скобки

Примечание: выносим за скобки множитель с меньшим показателем.


2.2.3. Введение новой переменной

Как правило, уравнения, решаемые этим способом, сводятся к квадратным.

Пример:

Пусть 4 x = а тогда уравнение можно записать в виде:

Сделаем обратную замену:

2.2.4. Использование однородности

Определение Показательные уравнения вида называются однородными.

Суть метода: Так как показательная функция не может принимать значение, равное нулю, и обе части уравнения можно делить на одно и то же не равное нулю число, разделим обе части уравнения, например, на .

Разделим обе части уравнения на

3. Первичное закрепление материала

Учащимся предлагается выбрать способ решения для каждого из уравнений, записанных в тетради для решения дома:

Далее на интерактивной доске решаются уравнения (после решения уравнение «растворяется», и появляется новое, что очень удобно):

4. Подведение итогов урока, домашнее задание

Итоги урока: вопросы, обсуждение того, что на уроке было непонятно, что понравилось, выставление оценок за урок.

Задание на дом: конспект; выписанные 5 уравнений.

Список литературы

  1. Алгебра и начала анализа. 10-11 кл.: Задачник/ Под ред. А.Г.Мордковича. – М.:Мнемозина, 2003. – 315с.
  2. Кодификатор элементов содержания к уровню подготовки выпускников общеобразовательных учреждений для проведения в 2011 году единого государственного экзамена по математике, «Федеральный институт педагогических измерений», 2011.
  3. Колмогоров А.Н. Алгебра и начала анализа: Учебник для 10-11 кл.сред.школы. – М.: Просвещение, 1990. – 320 с.
  4. Мордкович А.Г. Алгебра и начала анализа. 10-11 кл.: Учебник. – М.:Мнемозина, 2002. – 375с.


источники:

http://school-science.ru/8/7/41416

http://urok.1sept.ru/articles/600586