Проект на тему способы квадратных уравнений

Проект по теме»10 способов решения квадратных уравнений»

Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и при сдаче экзаменов.

Цели работы: изучить различные способы решения квадратных уравнений.

Исходя из данной цели, мною были поставлены следующие задачи:

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные способы решения квадратных уравнений;

— выявить наиболее удобные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Скачать:

ВложениеРазмер
sposoby_resheniya_kvadratnyh_uravneniy.docx513.31 КБ

Предварительный просмотр:

МБОУ Новотроицкая СОШ

решения квадратных уравнений

Выпонил: ученица 9 класса

Чемоданогва Ирина Сергеевна

Работа допущена к защите «_____» _______________ 201____г.

Подпись руководителя проекта ____________________(__________________)

I. История развития квадратных уравнений

1.1. Из история квадратных уравнений

1.1.1. Квадратные уравнения в Древнем Вавилоне

1.1.2.Квадратные уравнения в Индии.

1.1.3. Квадратные уравнения у ал — Хорезми.

1.1.4. Квадратные уравнения в Европе XIII — XVII вв.

  1. Квадратные уравнения и их виды

II. Способы решения квадратных уравнений

2.1.Разложение левой части уравнения на множители

2.2.Метод выделения полного квадрата

Решение квадратных уравнений по формулам

Решение уравнений с использованием теоремы Виета

5.Решение уравнений способом переброски».

  1. Свойства коэффициентов квадратного уравнения

7.Графическое решение квадратного уравнения

8.Решение квадратных уравнений с помощью циркуля и линейки

9.Решение квадратных уравнений с помощью номограммы

10. Геометрический способ решения квадратных уравнений

Список информационных источников

Теория уравнений в школьном курсе алгебры занимает ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Это связано с тем, что большинство жизненных задач сводится к решению различных видов уравнений.

В учебнике алгебры для 8 класса мы знакомимся с несколькими видами квадратных уравнений, и отрабатывали их решение по формулам. У меня возник вопрос «Существуют ли другие методы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому в этом учебном году я выбрала тему исследования связанную с квадратными уравнениями, в ходе работы она получил название «10 способов решения квадратных уравнений».

Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и при сдаче экзаменов.

Цели работы: изучить различные способы решения квадратных уравнений.

Исходя из данной цели, мною были поставлены следующие задачи:

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные способы решения квадратных уравнений;

— выявить наиболее удобные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Объект исследования : квадратные уравнения.

Предмет исследования : с пособырешения квадратных уравнений.

Теоретические: изучение литературы по теме исследования;

Анализ: информации полученной при изучении литературы;

результатов полученных при решении квадратных уравнений различными способами.

Сравнение способов на рациональность их использования при решении квадратных уравнений.

1. История развития квадратных уравнений.

1.1.1.Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ¾; X 2 — X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

1.1.2.Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 + bх = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис).

Соответствующее задаче уравнение:

Бхаскара пишет под видом: х 2 — 64х = -768

и, чтобы дополнить левую часть этого

уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем: х 2 — 64х + 32 2 = -768 + 1024,

х 1 = 16, х 2 = 48.

1.1.3.Квадратные уравнения у ал — Хорезми.

В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах 2 + с = bх.

2) «Квадраты равны числу», т.е. ах 2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах 2 + с = bх.

5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал — Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача . «Квадрат и число 21 равны 10 корням. Найти корень»

(подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

1.1.4. Квадратные уравнения в Европе XIII — XVII вв.

Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду: х 2 + bx = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

1.2.Квадратные уравнения и их виды.

Уравнение вида ax 2 + bx + c = 0, где a , b , c — действительные числа, причем a ≠ 0, называют квадратным уравнением.

Если a = 1 , то квадратное уравнение называют приведенным; если a ≠ 1, то неприведенным.
Числа a , b , c носят следующие названия: a — первый коэффициент, b — второй коэффициент, c — свободный член.

Если в квадратном уравнении ax2 + bx + c = 0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным.

Неполные квадратные уравнения бывают трёх видов:

Исследовательская работа на тему»10 способов решения квадратных уравнений»

Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Просмотр содержимого документа
«Исследовательская работа на тему»10 способов решения квадратных уравнений»»

Муниципальное учреждение «Отдел образования администрации муниципального района Мишкинский район

Муниципальное Бюджетное Общеобразовательное

Учреждение Лицей № 1 им. Флорида Булякова с. Мишкино

Тема: 10 способов решения квадратных уравнений

Выполнила: ученица 9 В класса

МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино

Руководитель: учитель математики

МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино

Алексеева Гузель Фанавиевна

Мишкино 2017 год

Исторические сведения о квадратных уравнениях……………………..стр.4

Определение квадратного уравнения………………………………. стр.7

Способы решения квадратных уравнений…………………………. стр.8

Разложение на множители левой части……………………………. стр.10

Метод выделения полного квадрата…………………………………стр.10

Решение квадратных уравнений по формуле…………………. стр.11

Решение уравнений с использованием теоремы Виета………. стр.11

Решение уравнений способом «переброски»…………………. стр.12

Свойства коэффициентов квадратного уравнения………………….стр.13

Графическое решение квадратного уравнения……………………. стр.13

Решение квадратных уравнений с помощью циркуля и линейки….стр.14

Уменьшение степени уравнения (использование теоремы Безу)….стр.15

Геометрический способ решения квадратных уравнений…………стр.15

Тренировочные задания для отработки различных способов решения квадратных уравнений…………………………………………………. стр.16

Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

В школьной программе рассматривается только 3 способа их решения. Готовясь к предстоящим экзаменам, я заинтересовался другими способами их этих уравнений. Поэтому я выбрала тему «10 способов решения квадратных уравнений».

Актуальность темы: на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно, и рационально решать квадратные уравнения, что также пригодится и при решении более сложных задач, в том числе и при сдаче экзаменов. Плюс выбранная тема мне очень интересна.

Цель работы: выявить способы решения уравнений второй степени и рассмотреть применение данных способов решения квадратных уравнений на конкретных примерах.

1) Проследить историю развития теории и практики решения квадратных уравнений;

2) Описать технологии различных существующих способов решения квадратных уравнений;

3) Выявить наиболее удобные способы решения квадратных уравнений;

4) Подобрать тренировочные задания для отработки изученных приемов;

5) Провести кружок для одноклассников.

Гипотеза: любое квадратное уравнение можно решить всеми существующими способами.

Объект исследования: квадратные уравнения.

Предмет исследования: способы решения квадратных уравнений.

теоретические: изучение литературы по теме исследования, изучение тематических Интернет-ресурсов;

анализ полученной информации;

сравнение способов решения квадратных уравнений на удобство и рациональность.

Время исследования: с 12 октября 2016 года по 20 декабря 2016 года.

Исторические сведения о квадратных уравнениях.

Уравнения второй степени умели решать еще в древнем Вавилоне. Математики Древней Греции решали квадратные уравнения геометрически; например, Евклид — при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактах.

Вывод формулы решения квадратного уравнения в общем, виде имеется у Виета. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Квадратные уравнения в древнем Вавилоне

В математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решение «типовых» задач, из которых решение аналогичных задач получались заменой числовых данных.

Необходимость решать квадратные уравнения возникла ещё в древности, была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются кроме неполных квадратных уравнений и полные уравнения. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общее методы решения квадратных уравнений.

Квадратные уравнения у ал-Хорезми

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Основная идея для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-Джабр и ал-Мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII века., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

XIII-XVII ввКвадратные уравнения в Европе . Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII в.

Квадратные уравнения в ИНДИИ

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «АРИАБХАТТИАМ», составленном в 499г. индийским математиком и астрономом АРИБХАТТОЙ. Другой индийский ученый, БРАХМАГУПТА VII век, изложил общее правило решения квадратных уравнений приведенных к единой канонической форме. В уравнении коэффициенты, кроме положительных, могут быть и отрицательными. Правило БРАХМАГУПТЫ по существу совпадает с современным решением. В древней ИНДИИ были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующие: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Одна из задач знаменитого индийского математика XIIв. Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать повисая…

Сколько было обезьянок

Ты скажи мне, в этой стае?

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Часть страницы из алгебры Бхаскары (вычисление корней).

2.Определение квадратного уравнения

Квадратным уравнением называют уравнение вида ах²+bх+с=0, где коэффициенты а, b, с — любые действительные числа, причем, а≠0. Коэффициенты а, b, с, различают по названиям: а – первый или старший коэффициент; b – второй или коэффициент при х; с – свободный член, свободен от переменной х.

Квадратное уравнение также называют уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение называют приведенным, если старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.

х²+рх+q=0 – стандартный вид приведенного квадратного уравнения

Кроме приведенных и неприведенных квадратных уравнений различают также полные и неполные уравнения.

Полное квадратное уравнение – это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты b и с отличны от нуля.

Неполное квадратное уравнение – это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b и с равен нулю.

Корнем квадратного уравнения ах²+вх+с=0 называют всякое значение переменной х, при котором квадратный трехчлен ах²+bх+с обращается в нуль.

Можно сказать и так: корень квадратного уравнения – это такое значение х, подстановка которого в уравнение обращает уравнение в верное числовое равенство (0=0).

Решить квадратное уравнение – найти все его корни или установить, что их нет.

3.Способы решения квадратных уравнений

Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать.

Проектная работа «Различные способы решения квадратных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Муниципальное общеобразовательное учреждение.docx

Муниципальное общеобразовательное учреждение

«Зимстанская средняя общеобразовательная школа»

«Различные способы решения квадратных уравнений»

Выполнил: Кочанов Иван Андреевич,

ученик 9 класса.

Проверила: Юдина Елена Владимировна,

Определение квадратного уравнения, его виды

Из истории квадратных уравнений

Способы решения квадратных уравнений:

Решение квадратных уравнений через дискриминант.

Решение квадратных уравнений по формуле с четным коэффициентом.

Решение квадратных уравнений выделением полного квадрата двучлена.

Решение квадратных уравнений разложением на множители.

Решение квадратных уравнений при помощи теоремы Виета.

Графическое решение квадратного уравнения.

Решение квадратных уравнений способом «переброски».

Решение квадратных уравнений с помощью свойств коэффициентов.

Решение квадратных уравнений с помощью циркуля и линейки.

Решение квадратных уравнений с помощью номограммы

Практически все, что окружает современного человека — это всё так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые достаточно часто сводятся к уравнениям второй степени (квадратным).

В учебнике алгебры для 8 класса мы знакомились с несколькими видами квадратных уравнений и отрабатывали их решение по формулам. У меня возник вопрос «Существуют ли другие способы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому я выбрал тему проектной работы, связанную с квадратными уравнениями, в ходе работы она получила название «Различные способы решения квадратных уравнений».

Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и при сдаче экзаменов.

Цель работы: Изучение различных способов решения квадратных уравнений

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные методы решения квадратных уравнений;

— выявить наиболее удобные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Гипотеза: любое квадратное уравнение можно решить всеми существующими способами.

Объект исследования: квадратные уравнения .

Предмет исследования: способы решения уравнений второй степени .

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. В него вошли как известные нами из школьного курса алгебры способы решения квадратных уравнений, так и дополнительный материал.

Определение квадратного уравнения, его виды.

Определение : Квадратным уравнением называется уравнение вида

где х — переменная , а, b и с -некоторые числа, причем, а ≠ 0.

Если в квадратном уравнении ах 2 + bx + c = 0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением.

Неполные квадратные уравнения бывают трёх видов:

1) ах 2 + с = 0, где с ≠ 0;

2) ах 2 + b х = 0, где b ≠ 0;

Из истории квадратных уравнений.

а) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

б) Квадратные уравнения в Индии .

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении коэффициенты, кроме а , могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII .

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Способы решения квадратных уравнений

Решение квадратных уравнений через дискриминант.

Корни уравнения ах 2 + b х + с = 0, а ≠ 0 можно найти по формуле

, где выражение b 2 — 4 ac = D называется дискриминантом.

В случае положительного дискриминанта, т.е. при b 2 — 4 ac >0, уравнение

ах 2 + b х + с = 0 имеет два различных корня.

2. Если дискриминант равен нулю, т.е. b 2 — 4 ac = 0 , то уравнение имеет один корень x =.

3. Если дискриминант отрицателен, т.е. b 2 — 4 ac , то уравнение ах 2 + b х + с = 0 не имеет корней.

Данная формула корней квадратного уравнения ах 2 + b х + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного.

D = 4 2 — 4∙3∙ (-7) = 16 + 84 = 100,

Решение квадратных уравнений по формуле с четным коэффициентом.

Если второй коэффициент уравнения b = 2 k – четное число, то формулу корней можно записать в виде

Приведенное уравнение х 2 + рх + q = 0 совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней принимает вид

Формулу удобно использовать, когда р — четное число.

Решение квадратных уравнений в ыделением полного квадрата двучлена

Решить уравнение х²+ 6х — 7 = 0 .

Выделим в левой части полный квадрат.

Запишем выражение х² + 6х в следующем виде: х²+ 6х = х²+ 2• х • 3.

В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х на 3. Поэтому чтобы получить полный квадрат, нужно прибавить 3², так как х² + 2• х • 3 + 3²= (х + 3)².

Преобразуем теперь левую часть уравнения х²+ 6х — 7 = 0 , прибавляя к ней и вычитая 3². Имеем:

х²+ 6х — 7 = х² + 2• х • 3 + 3²— 3²— 7 = (х + 3)²— 9 — 7 = (х + 3)²— 16.

Таким образом, данное уравнение можно записать так:

Следовательно, х + 3 = -4 или х + 3 = 4

Решение квадратных уравнений р азложением на множители.

При решении квадратных уравнений часто применяется метод разложения на множители (с помощью вынесения за скобки общего множителя, формул сокращенного умножения или способа группировки).

Разложим левую часть на множители:

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при , а также при Это означает, что числа и 1 являются корнями уравнения

Решение квадратных уравнений при помощи т еоремы Виета.

Приведенным квадратным уравнением называется уравнение вида

, где первый коэффициент равен единице.

Корни приведенного квадратного уравнения можно найти по следующей формуле:

.

Чтобы квадратное уравнение ах 2 + b х + с = 0, а ≠ 0 привести к приведенному виду, нужно все его члены разделить на a , и квадратное уравнение примет вид

Если обозначитьи , то мы получим уравнение вида. А формулы примут вид

Таким образом: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

По коэффициентам p и q можно предсказать знаки корней.

а) Если свободный член q приведенного уравнения положителен ( q > 0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента:

если р> 0, то оба корня отрицательные.

х 2 – 3х + 2 = 0; х 1 = 2 и х 2 = 1, так как q = 2 > 0 и p = – 3

х 2 +8х + 7 = 0; х 1 = – 7 и х 2 = – 1, так как q = 7 > 0 и p = 8 >0.

б) Если свободный член q приведенного уравнения (1) отрицателен ( q p p > 0.

х 2 + 4х – 5 = 0; х 1 = – 5 и х 2 = 1, так как q = – 5 0 и p = 4 > 0;

х 2 –8х – 9 = 0; х 1 = 9 и х 2 = – 1, так как q = – 9 0 и p = – 8 >0.

Графическое решение квадратных уравнений

Если в уравнении х²+ px+ q= 0 перенести второй и третий члены в правую часть, то получим х²= — px— q.

Построим графики зависимости у = х² и у = — px— q.

График первой зависимости — парабола, проходящая через начало координат. График второй зависимости —прямая.

Возможны следующие случаи:

— прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Примеры:

1)Решить уравнение =0

Преобразуем уравнение к виду .

Построим в одной системе координат графики функций

и

Они пересекаются в двух точках A(-1;1) и B(3;9). Корнями уравнения служат абсциссы точек A и B , значит, .

Ответ:

2) Решим графически уравнение х²— 2х + 1 = 0 .

Решение. Запишем уравнение в виде х²= 2х — 1 .

Построим параболу у = х² и прямую у = 2х — 1.

Прямую у = 2х — 1 построим по двум точкам М (0; — 1)

и N(1/2; 0) . Прямая и парабола пересекаются в точке с

абсциссой х = 1 . Ответ:х = 1.

3) Решим графически уравнение х²— 2х + 5 = 0 .

Решение. Запишем уравнение в виде х²= 5х — 5 . Построим параболу у = х² и прямую у = 2х — 5 . Прямую у = 2х — 5 построим по двум точкам М(0; — 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

Ответ: уравнение х²— 2х + 5 = 0 корней не имеет.

Решение квадратных уравнений способом «переброски».

Рассмотрим квадратное уравнение

ах² + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнение

Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению

равносильно данному. Его корни у₁ и у ₂ найдем с помощью теоремы Виета.

Окончательно получаем х₁= у₁/а и х₂= у₂/а .

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х²– 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение 4х²– 22х + 30 = 0

2х = у , откуда х = у/2

Согласно теореме Виета

Решение квадратных уравнений с помощью с войств коэффициентов.

Пусть дано квадратное уравнение

ах² + bх + с = 0, где а ≠ 0.

А) Если а+ b+ с = 0 (т.е. сумма коэффициентов равна нулю), то х₁ = 1, х₂= с/а.

Решим уравнение 345х²– 137х – 208 = 0.

Решение. Так как а + b+ с = 0 (345 – 137 – 208 = 0), то

Решим уравнение 132х 2 — 247х + 115 = 0

Решение. Т. к. а- b +с = 0 (132 – 247 +115=0), то

9 . Решение квадратных уравнений с помощью циркуля и линейки.

Графический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то потребуется много времени, и при этом степень точности получаемых результатов невелика.

Предлагаем следующий способ нахождения корней квадратного

уравнения ах 2 + b х + с = 0 с помощью циркуля и линейки.

построим точки S ( ; ) (центр окружности) и А (0;1);

проведем окружность с радиусом SA ;

абсциссы точек пересечения этой окружности с осью Ох являются корнями квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра ( AS > SK , или R > ), окружность пересекает ось Ох в двух точках (рис.а) B ( х 1 ; 0) и D ( х 2 ;0), где

2) Радиус окружности равен ординате центра ( AS = S В , или R = ), окружность касается оси Ох в точке B ( х 1 ; 0 ), где

х 1 – корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра ( AS S В , или R ), окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

Решение. Определим координаты точки центра окружности по формулам:

у Проведем окружность радиуса S A , где А (0;1).

Б) Решим уравнение

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса S A , где А (0;1).

— 2 х Ответ : х= – 2 .

В) Решим уравнение

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса S A , где А (0;1).

Ответ : уравнение не имеет решения.

10. Решение квадратных уравнений с помощью номограммы.

Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 ( см. Брадис В.М . Четырехзначные математические таблицы. – М., Просвещение, 1990).

Таблица XXII . Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Для уравнения z 2 9 z + 8 = 0.

Номограмма дает корни

z 1 = 8, 0 и z 2 = 1, 0 (рис. 12).

Решим с помощью

2 z 2 9 z + 2 = 0.

Разделим коэффициенты этого

уравнения на 2,получим уравнение

z 2– 4, 5 z + 1 = 0.

Номограмма дает корни z 1 = 4 и z 2 = 0,5.

Для уравнения z 2 + 5 z – 6 = 0

номограмма дает положительный

корень z 1 = 1, а отрицательныйкорень находим, вычитая положительный корень

Для уравнения z 2 – 2 z – 8 = 0

корень z 1 = 4, отрицательный

В ходе выполнения проектной работы я считаю, что с поставленными целями и задачами справился, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Способов решения квадратных уравнений очень много. Я нашёл 10 способов решения квадратных уравнений. Нужно отметить, что не все они удобны для решения, но каждый из них уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на ОГЭ и ЕГЭ. Для того чтобы усвоить все методы решения уравнений, нужно прорешать несколько уравнений изучаемым способом. А для этого нужны задания. В данной работе представлены тренировочные задания для каждого из способов решения квадратных уравнений.

Подводя итоги, можно сделать вывод: квадратные уравнения играют огромную роль в математике. Эти знания могут пригодиться мне на протяжении всей жизни, а так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должны заинтересовать увлекающихся математикой школьников.

Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.

Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович — М.: Просвещение, 1988, 372с.

Брадис, В.М. Четырехзначные математические таблицы для средней школы/ В.М, Брадис-М.: Просвещение, 1990-

Дидактический материал к работе.

1. Решите квадратное уравнение разложением левой части на множители:

а) х 2 – х = 0; е) х 2 – 4х + 4 = 0;

б) х 2 + 2х = 0; ж) х 2 + 6х + 9 = 0;

в) 3 х 2 – 3х = 0; з) х 2 + 4х +3 = 0;

г) х 2 – 81 = 0; и) х 2 + 2х – 3 = 0.

2. Решите уравнения по формуле:

а) 2х 2 – 5х + 2= 0 г) 4х 2 – 12х +9 = 0

б) 6х 2 + 5х + 1=0 д) 10х 2 – 6х + 0,9 = 0

в) 3х 2 – 7х – 1 = 0 е) 2х 2 – 3х + 2 = 0

3. Не решая квадратного уравнения, определите знаки его корня:

1) х 2 – 2х – 15 = 0 7) х 2 – 2х + 1 = 0

2) х 2 + 2х – 8 = 0 8) х 2 + 4х + 4 = 0

3) х 2 + 10х + 9 = 0 9) х 2 – 6х + 9 = 0

4) х 2 – 12х + 35 = 0 10) 4х 2 + 7х – 2 = 0

5)3 х 2 +1 4х + 16 = 0 11) 5х 2 – 9х – 2 = 0

6) х 2 – 5х + 6 = 0 12) х 2 – 11х + 15 = 0

4. Решите уравнения, используя метод «переброски»:

2х 2 – 9х +9 = 0 5) 3х 2 + х – 4 = 0

10х 2 – 11х + 3 = 0 6) 5х 2 – 11х + 6 = 0

3х 2 +11х +6 = 0 7) 2х 2 + х – 10 = 0

4х 2 +12х + 5 = 0 8) 6х 2 +5х – 6 = 0

5. Решите уравнения, используя свойства коэффициентов:

5х 2 – 7х + 2 = 0 5) 839х 2 – 448х – 391 = 0

3х 2 + 5х – 8 = 0 6) 939х 2 + 978х +39 = 0

11х 2 + 25х – 36 = 0 7) 313х 2 + 326х + 13 = 0

11х 2 + 27х +16 = 0 8) 2006х 2 – 2007х + 1 = 0

6. Решите уравнения по формуле четного коэффициента:

4х 2 – 36х + 77 = 0 3) 4х 2 + 20х + 25 = 0

15х 2 – 22х – 37 = 0 4) 9х 2 – 12х + 4 = 0

7. Решите приведенные квадратные уравнения по формуле:

х 2 – 8х – 9 = 0 3) х 2 + 18х + 81 = 0

х 2 + 6х – 40 = 0 4) х 2 — 56х + 64 = 0

8. Решите графически уравнения:

1) х 2 х – 6 = 0; 4) х 2 2х – 3 = 0;

2) х 2 4х + 4 = 0; 5) х 2 + 2х – 3 = 0;

3) х 2 + 4х +6 = 0; 6) 4х 2 4х – 1 = 0.

9. Решите с помощью циркуля и линейки следующие уравнения:

1) х 2 3х + 2 = 0; 4) 2х 2 7х + 5 = 0;

2) х 2 3х – 10 = 0; 5) х 2 6х + 9 = 0;

3) х 2 + 4х + 3 = 0; 6) х 2 + 4х + 5 = 0.

10. Решите с помощью номограммы уравнения:

1) z 2 – 7 z + 6 = 0; 4) z 2 – z – 6 = 0 ;

2) z 2 + 5 z + 4 = 0; 5) z 2 – 11 z + 18 = 0;

3) z 2 – 4 z + 4 = 0; 6) z 2 – 2 z + 3 = 0.

Выбранный для просмотра документ квад. уравн..pptx

Описание презентации по отдельным слайдам:

Муниципальное Общеобразовательное Учреждение «Зимстанская средняя общеобразовательная школа» Индивидуальный проект «Различные способы решения квадратных уравнений» Выполнил: Кочанов Иван Андреевич, ученик 9 класса. Проверила: Юдина Елена Владимировна, преподаватель математики

АКТУАЛЬНОСТЬ Практически все, что окружает современного человека — это всё так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые достаточно часто сводятся к уравнениям второй степени (квадратным). В учебнике алгебры для 8 класса мы знакомились с несколькими видами квадратных уравнений и отрабатывали их решение по формулам. У меня возник вопрос «Существуют ли другие способы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому я выбрал тему проектной работы, связанную с квадратными уравнениями, в ходе работы она получила название «Различные способы решения квадратных уравнений». Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и при сдаче экзаменов. Цель работы: Изучение различных способов решения квадратных уравнений Задачи: — изучить историю развития квадратных уравнений; — рассмотреть стандартные и нестандартные методы решения квадратных уравнений; — выявить наиболее удобные способы решения квадратных уравнений; — научиться решать квадратные уравнения различными способами. Объект исследования: квадратные уравнения. Предмет исследования: способы решения уравнений второй степени. Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. В него вошли как известные нами из школьного курса алгебры способы решения квадратных уравнений, так и дополнительный материал.

Определение квадратного уравнения, его виды. Определение: Квадратным уравнением называется уравнение вида ax2 + bx + c = 0, где х- переменная, а,b и с-некоторые числа, причем, а ≠ 0. Если в квадратном уравнении ах2 + bx + c = 0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением. Неполные квадратные уравнения бывают трёх видов: 1) ах2 + с = 0, где с ≠ 0; 2) ах2 + bх = 0, где b ≠ 0; 3) ах2 = 0.

Из истории квадратных уравнений. Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Квадратные уравнения в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах2 + bх = с, а > 0 В уравнении коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

Квадратные уравнения в Европе XIII-XVII вв. Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2 + bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид. Мухаммед аль-Хорезми Леонардо Фибоначчи Франсуа Виет Рене Декарт

Способы решения квадратных уравнений 1. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ ЧЕРЕЗ ДИСКРИМИНАНТ


источники:

http://multiurok.ru/files/issliedovatiel-skaia-rabota-na-tiemu-10-sposobov-r.html

http://infourok.ru/proektnaya-rabota-razlichnie-sposobi-resheniya-kvadratnih-uravneniy-3686179.html