Проект нестандартные способы решения уравнений

Учебный проект «Нестандартные приемы решения квадратных уравнений»

Разделы: Математика

Тема «Квадратные уравнения» является одной из самых актуальных. Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение в разных разделах математики.

В школьном курсе изучаются формулы корней квадратного уравнения, с помощью которых можно решать любые квадратные уравнения. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения.

Проблемный вопрос: существуют ли кроме общепринятых приемов решения квадратных уравнений другие, которые позволяют быстро и рационально решать квадратные уравнения?

Гипотеза: установление связи между коэффициентами и корнями квадратного уравнения позволит найти эффективные приемы быстрого решения квадратного уравнения.

Цель: установив связь между коэффициентами и корнями квадратного уравнения, найти новые рациональные приемы решения уравнений

  • Изучить литературу по истории приемов решения квадратных уравнений
  • Обобщить накопленные знания о квадратных уравнениях и способах их решения.
  • Установить зависимость корней квадратного уравнения от его коэффициентов и найти эффективные приемы быстрого решения квадратного уравнения, в том числе с большими коэффициентами.
  • Сделать выводы.
  • Разработать дидактический материал для проведения практикума по решению квадратных уравнений с использованием новых приемов в помощь ученикам, увлеченным математикой и учителям, ведущим факультативные занятия.

Объект исследования: квадратные уравнения

Предмет изучения: методы и приемы решения квадратных уравнений, в том числе с большими коэффициентами

Глава 1.
Изучение литературы

Основной материал, связанный с изучением темы «Квадратные уравнения» находится в УМК под ред.С.А.Теляковского. В учебнике разобраны все основные вопросы по теме:

1. Определение и виды квадратных уравнений

2. Основные методы решения квадратных уравнений

Однако, дополнительный материал, связанный с историей вопроса о возникновении квадратных уравнений можно найти в «Энциклопедия по математике» «Занимательная математика», М., 2007. Способы решения задач на квадратные уравнения в полном объёме раскрыты в изданиях «Сборник элективных курсов» Волгоград, 2006 г.

Изученная литература позволила приобрести новые интересные знания по истории возникновения квадратного уравнения, приобрести опыт по решению различных квадратных уравнений и перейти к следующему этапу в исследовании – перенести полученные знания в нестандартную ситуацию.

Глава 2.
Изучение истории вопроса о квадратных уравнениях

Глава 3.
Обобщение имеющихся знаний о квадратных уравнениях и способах их решения

Глава 4.
Нестандартные приемы решения квадратных уравнений

Дидактический материал по применению нестандартных приемов решения квадратных уравнений.

1. Найди наиболее рациональным способом корни уравнения:

1978х 2 – 1984х + 6=0
(1; 6/1978)

4х 2 + 11х + 7 = 0
(-1; -7/4)

319х 2 + 1988х +1669=0
(-1; -1669/319)

2. Решить квадратные уравнения с большими коэффициентами

839х 2 – 448х -391=0
(1; -391/839)

345х 2 – 137х – 208=0
(1;.-208/345)

3. Используя полученные знания, установи соответствие:

1) х 2 +5х+6=0
2) 6х 2 -5х+1=0
3) 2х 2 -5х+3=0
4) 3х 2 -5х+2=0
5) х 2 -5х+6=0
6) 6х 2 +5х+1=0
7) 2х 2 +5х+2=0
8) 3х 2 +5х+2=0
1) 1/6;1/2
2) 1; 3/2
3) 1; 2/3
4) -2; -3
5) -1/3 ; -1/2
6) -1; -3/2
7) -1; -2/3
8) 2;3

Глава 5.
Анализ работы учащихся по решению квадратных уравнений нестандартными способами

Разработаны критерии оценки проведенного практикума:

  1. За каждое верно выполненное задание ставится 1 балл;
  2. Наиболее возможное количество набранных баллов-17
  3. Если ученик набирает менее

7 баллов, то выставляется оценка «2»
от 7 до 11 баллов «3»
от 12 до 15 баллов «4»
от 16-17 баллов «5»

Выполняли работу – 11человек

от 16-17 – 5человек (45%)
от 12-15– 6человек (55%)
Менее 12 – 0 человек

Средний балл – 4,45

Процент качества – 100%

Типичные ошибки, допущенные в работе связаны с невнимательностью учащихся.

Выводы по результатам проведения практикума

Успешно выполненная работа учащимися 8 класса, позволяет сделать следующие выводы:

  • нестандартные приемы решения квадратных уравнений заслуживают внимания;
  • позволяют экономить время решения, что обусловлено применением тестовой системы экзаменов.

В процессе работы над проектом, была создана система нестандартных приемов решения квадратных уравнений и разработан банк заданий, на основе которого проведена успешная апробация этих приемов.

Данный материал можно рекомендовать для внеклассных и факультативных занятий по математике. Учителя могут использовать его как методическое пособие при изучении темы «Решение квадратных уравнений», а также, для контроля за знаниями учащихся.

Материалом этого проекта могут воспользоваться и те, кто любит математику и хочет знать о математике больше.

  1. Выгодский М.Я. Справочник по элементарной математике. – М. государственное издательство физико-математической литературы, 1970.
  2. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
  3. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
  4. Макарычев Ю.Н., Миндюк Н.Г. Дополнительные главы к школьному учебнику. 8 класс М., Просвещение, 1996.
  5. Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
  6. Энциклопедический словарь юного математика. – М.: Педагогика, 1985.

Творческие проекты и работы учащихся

В процессе работы над индивидуальным проектом по математике «Нестандартные методы решения уравнений и неравенств» ученицей 10 класса школы была поставлена и реализована цель изучить новые методы решения уравнений и неравенств. Каждый из методов был описан и продемонстрирован отдельно.

Подробнее о проекте:

В готовом творческом и исследовательском проекте по математике «Нестандартные методы решения уравнений и неравенств» учащейся приведены характеристики таких методов решения уравнений, как метод разложения на множители, метод замены переменной, метод решения уравнений с помощью теоремы Виета и метод интервалов, а также продемонстрированы нестандартные методы решения алгебраических уравнений и неравенств, метод рационализации, учёт ОДЗ и метод мажорант.

Оглавление

Введение
1. Теория уравнений и неравенств.
1.1 Основные понятия теории уравнений и неравенств.
1.2 Методы решения уравнений и неравенств.
1.2.1 Метод разложения на множители.
1.2.2 Метод замены переменной.
1.2.3 Метод решения уравнений с помощью теоремы Виета.
1.2.4 Метод интервалов.
2. Нестандартные методы решения алгебраических уравнений и неравенств.
2.1 Метод рационализации.
2.2 Учёт ОДЗ.
2.3 Метод мажорант (оценки).
2.4 Использование свойств функций.
2.4.1 Использование ОДЗ.
2.4.2 Использование монотонности функции.
2.4.3 Использование графиков.
2.5 Некоторые искусственные способы решения алгебраических уравнений.
2.5.1 Угадывание корня уравнения.
3. Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств».
3.1 Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт.
3.2 Создание контента тренажёра.
3.3 Описание созданного продукта.
3.4 Апробация продукта.
Заключение
Список литературы

Введение

Объектом исследования являются уравнения и неравенства.

Предмет исследования: некоторые нестандартные методы решения уравнений и неравенств.

В начале работы над проектом была сформулирована гипотеза: благодаря новым методам решения уравнений и неравенств, удастся сократить количество шагов решения в алгоритме и снизить вероятность допущения ошибки. Исходя из этого вывода, была поставлена цель проекта: изучить новые методы решения уравнений и неравенств.

Продуктом проекта были выбраны дидактические материалы с алгоритмом решения уравнений и неравенств новыми методами и тренажёры для отработки заданий подобного типа. Для продуктивного и удобного использования тренажера необходимо установить критерии оценки продукта проекта:понятный и удобный интерфейс, наличие мобильной версии, возможность использования русского языка, возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера, тиражируемость (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования).

В процессе создания проекта были сформулированы некоторые задачи:

  1. Изучить всевозможные источники информации по данной теме, структурировать собранную информацию
  2. Провести опрос
  3. Разработать алгоритмы решения уравнений и неравенств определенным (нестандартным) способом
  4. Анализ имеющихся тренажёров, подобрать задания, решаемые нестандартным способом, решить их
  5. Создать тренажёр
  6. Апробировать продукт
  7. Провести опрос об эффективности продукта
  8. Собрать статистику
  9. Распространить продукт

Методы исследования, используемые при работе над проектом: анализ, обобщение, синтез, классификация, систематизация, сравнение, прототипирование.

Научная новизна: разработаны уникальные дидактические материалы

Теоретическая значимость: расширение представления о некоторых методах решения уравнений и неравенств.

Практическая значимость: продукт проекта может быть использован учениками при подготовке к ЕГЭ, а также учителями математики.

Социальная значимость: проект может помочь ученикам 9-11 классов при подготовке к экзамену.

Основные понятия теории уравнений и неравенств

Уравнение – равенство, содержащее в себе переменную, значение которой требуется найти.

Корень (решение) уравнения – это значение переменной, при котором уравнение обращается в верное числовое равенство.

Решить уравнение — найти его корни или доказать, что корней нет.

Неравенство – два числа или математических выражения, соединенных одним из знаков: , ≤, ≥.

Основные свойства уравнений:

  • Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
  • Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

Решение неравенства – то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – найти все его решения или установить, что их нет.

Методы решения уравнений и неравенств

Теперь, после перечисления основных понятий, следует вспомнить известные нам из школьной программы способы решения уравнений и неравенств.

Метод разложения на множители

Для разложения на множители используют формулы сокращённого умножения (ФСУ), вынесение общего множителя за скобку, способ группировки, деление многочлена на многочлен.

Суть данного метода в том, чтобы путем равносильных преобразований представить левую часть исходного уравнения, содержащую неизвестную величину в какой-либо степени, в виде произведения двух выражений, содержащих неизвестную величину в меньшей степени. При этом справа от знака равенства должен оказаться ноль.

Метод замены переменной

Цель данного метода в том, чтобы удачным образом заменить сложное выражение, содержащее неизвестную величину, новой переменной, в результате чего уравнение принимает более простой вид. Далее полученное уравнение решается относительно новой переменной, после чего происходит возврат к исходной переменной.

Метод решения уравнений с помощью теоремы Виета

Важно. Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

Приведенное квадратное уравнение – это уравнение, в котором старший коэффициент «a = 1». В общем виде приведенное квадратное уравнение выглядит следующим образом: х2 + px + q = 0. разница с обычным общим видом квадратного уравнения ax2 + bx + c = 0 в том, что в приведённом уравнении x2 + px + q = 0 коэффициент а = 1.

Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит что справедливо следующее:

x1 · x2 = q, где x1 и x2 — корни этого уравнения.

Нестандартные методы решения алгебраических уравнений и неравенств. Метод рационализации

Приведем алгоритм решения уравнений и неравенств методом рационализации:

  • Нахождение ОДЗ уравнения/неравенства
  • Привести данное неравенство к стандартному виду: слева дробь (или произведение), справа – ноль.
  • Заменить выражения левой части на более простые, эквивалентные им по знаку.
  • Решить полученное неравенство, например, методом интервалов.

Учёт ОДЗ

Иногда знание ОДЗ позволяет доказать, что уравнение (или неравенство) не имеет решений, а иногда позволяет найти решение уравнения (или неравенства) непосредственно подстановкой чисел из ОДЗ.

  • Найти ОДЗ уравнения/неравенства.
  • Подставить значение ОДЗ в исходное уравнение/неравенство, чтобы проверить, является ли оно корнем.

Метод мажорант (оценки)

Метод мажорант также называют методом оценки левой и правой частей, входящих в уравнения и неравенства.

Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р.

Мажоранты многих элементарных функции известны. Их нетрудно указать, зная область значений функции.

  • Определить монотонность и область определения функции (ООФ).
  • Методом подбора найти корень уравнения/неравенства.
  • Исходя из монотонности функции делаем вывод о количестве корней.

Использование графиков

При решении уравнений и неравенств иногда полезно рассмотреть эскиз графиков их правой и левой частей. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения (или неравенства) было очевидно.

Обратим внимание, что эскиз графика лишь помогает найти решение, но писать, что из графика следует ответ, нельзя, ответ ещё надо обосновать.

  • Определить ОДЗ уравнения/неравенства.
  • Представить левую и правую части уравнения/неравенства как функции и построить их графики.
  • По графику определить решение уравнения/неравенства.
  • Доказать справедливость ответа.

Угадывание корня уравнения

Иногда внешний вид уравнения подсказывает, какое число является корнем уравнения.

  • Методом подбора определить корень уравнения.
  • Найти ОДЗ уравнения.
  • Привести многочлен к стандартному виду.
  • Определить остальные корни уравнения.

Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств»

В качестве продукта проекта был выбран интерактивный тренажер, который позволит практиковаться в решении уравнений и неравенств с помощью новых, нестандартных методов решения. Размещение тренажера на сетевой платформе позволит сделать данный продукт доступным для всех, кто хочет разобраться в этой теме.

Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт

При создании продукта были проанализированы следующие сетевые сервисы:

Платформы были проанализированы по критериям:

  • Понятный и удобный интерфейс сайта
  • Возможность составления разнотипных заданий, для создания интересного и разнообразного контента
  • Наличие мобильной версии
  • Возможность использования русского языка
  • Возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера
  • Доступность (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования)
  • В данной таблице приведены результаты оценки сетевых сервисов по выбранным критериям:

«Нестандартные методы решения квадратных уравнений»

Теория уравнений занимает ведущее место в алгебре и математике в целом. Сила теории уравнений в том, что не только имеет теоретическое значение для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Квадратное уравнение представляет собой большой и важный класс уравнений, решающих как с помощью формул, так и с помощью элементарных функций.

В учебниках учащиеся знакомятся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Данная работа показать различные способы решения квадратных уравнений, уделяеется особое внимание тем, которые не изучаются в школьной программе.

Скачать:

ВложениеРазмер
Школьная конференция239.72 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение
Средняя общеобразовательная школа №72 г. Липецка

Название работы: Нестандартные методы решения квадратных уравнений

Камышов Даниил Николаевич

Зуев Егор Алексеевич

Учащиеся 8 Б класса

РуководителиьФедулова Ольга Николаевна

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Для выявления актуальности моей темы я провела исследование. Учащимся 8-11 классов было предложено решение полного квадратного уравнения любым известным им способом. В исследовании приняло участие 114 учащихся из 8-х, 9-х,11-х классов. Результаты исследования выявили следующее:

Способы решения квадратного уравнения

Метод выделения квадрата двучлена

Метод разложения левой части уравнения на множители способом группировки

Решение уравнения по формулам дискриминанта и корней квадратного уравнения

Решение уравнения, используя теорему Виета.

Решение уравнения графическим способом.

Неверно решили уравнение

Актуальность темы исследования.

Теория уравнений занимает ведущее место в алгебре и математике в целом. Сила теории уравнений в том, что не только имеет теоретическое значение для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Квадратное уравнение представляет собой большой и важный класс уравнений, решающих как с помощью формул, так и с помощью элементарных функций.

В учебниках мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Все это заинтересовало меня, и поэтому, для своей исследовательской работы выбрал тему «Способы решения квадратных уравнений».

Цель исследовательской работы : выявить способы решения квадратных уравнений, узнать можно ли решить любое квадратное уравнение данными способами и выделить особенности и недостатки этих способов.

Задачи исследовательской работы : проанализировать источники литературы для выявления способов решения квадратных уравнений, показать различные способы решения квадратных уравнений.

  1. Познакомиться с историческими фактами, связанными с данным вопросом.
  2. Описать технологии различных существующих способов решения уравнений второй степени.
  3. Провести анализ этих способов, сравнить их.
  4. Привести примеры применения различных способов решения уравнений.
  5. Поделиться полученными данными работы с учащимися 8-х классов.

Объект исследовани я: квадратные уравнения.

Предмет исследования: способы решения квадратных уравнений.

Гипотеза: существуют ли другие способы решения квадратного уравнения и имеют ли они право на существование?

Практическая значимость: квадратные уравнения – это фундамент, на котором построен курс алгебры. К решению квадратных уравнений сводятся решения дробно-рациональных уравнений и текстовых задач, находят широкое применение при решении тригонометрических, логарифмических, иррациональных уравнений. Начинают изучать решение квадратных уравнений в 8 классе и решают их до окончания вуза.

Методы исследования: анализ литературы, социологический опрос, наблюдение, сравнение и обобщение результатов

Этапы выполнения исследовательской работы:

1. Этап «Сбор статистических данных».

Включает в себя: изучение поставленных задач, определение значимых понятий, подбор источников информации, сбор информации.

2. Этап «Обработка данных».

Включает в себя: практическое применение способов решения квадратных уравнений.

3. Этап «Анализ данных»

Включает в себя: анализ результатов, формулирование выводов

История возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений. Правило решения таких уравнений, изложенное в вавилонских текстах, совпадают с современным, однако неизвестно, каким образом дошли они до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Задачи на квадратные уравнения встречаются уже в 499 г. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Часто они были в стихотворной форме.

Вот одна из задач знаменитого индийского математика XIIв. Бхаскары.

Обезьянок резвых стая

Власть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась,

А двенадцать по лианам

Стали прыгать, повисая.

Сколько ж было обезьянок

Ты скажи мне, в этой стае?

Квадратные уравнения в Европе 13-17 вв. Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардом Фибоначчи. Эта книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники 14-17 веков. Общее правило решения квадратных уравнений вида было сформировано в Европе лишь в 1544 году Штифелем. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики 16 века. учитывали помимо положительных, и отрицательные корни. Лишь в 17 веке благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

  1. «Квадраты равны корням», т.е. ax 2 + c =bx (5х 2 =10х).
  2. «Квадраты равны числу», т. е. ax 2 =c (5x 2 =80).
  3. «Корни равны числу», т. е. ax=c (4х=20).
  4. «Квадраты и числа равны корням»,т.е. ax 2 +c=bx (х 2 + 10х=39).
  5. «Квадраты и корни равны числу», т. е. ax 2 +bx=c (x 2 +21=10x).
  6. Корни и числа равны квадратам», т. е. bx+c=ax 2 (3х+4=х 2 )

Его решение, конечно, не совпадает полностью с нашим. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства. Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х 2 +bх=с, при всевозможных комбинациях знаков коэффициентов b, c , было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых вXVIв. учитывают, помимо положительных, и отрицательные корни. Лишь вXVIIв. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была сформулирована им впервые в 1591г.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета ещё далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2.1. Определение квадратного уравнения и его виды.

1) Алгоритм – точное предписание (правило) о выполнении в определенном порядке указанных операций (шагов алгоритма), позволяющее решать все задачи определенного вида.

2) Квадратным уравнением называют уравнения вида:

ax 2 +bx-c=0 , где a, b, c – некоторые действительные числа.

а – первый или старший коэффициент;

b – второй коэффициент или коэффициент при х;

с – свободный член.

3) Квадратное уравнение называют приведенным , если старший коэффициент равен 1;квадратное уравнение называют непереведенным , если старший коэффициент отличается от 1.

4)Корнем квадратного уравнения называют всякое значение переменной х, при котором квадратный трехчлен обращается в нуль.

5) Решить квадратное уравнение – значит найти все его корни или установить, что корней нет.

2.2. Решение квадратного уравнения общеизвестными способами.

Разложение левой части уравнения на множители.

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению.

Решим уравнение х 2 +10х-24=0.

Разложим левую часть уравнения на множители:

Х 2 +10х-24=х 2 +12х-2х-24=х(х+12)-2(х+12)=(х+12)(х-2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайней мере один из множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х=2,а уравнение х 2 +10х-24=0.

Решение квадратного уравнений по формуле

Умножим обе части уравнения ax 2 +bx+c=0 , а ≠ 0, на 4а и, следовательно, имеем :

4а 2 х 2 +4аbc+4ac=0

((2ax) 2 +2ax ∙ b + b 2 )-b 2 +4ac=0

Выражение b 2 — 4 ac называют дискриминантом и обозначают D, причем

  • Если D>0, то уравнение ax 2 +bx+c=0 имеет два различных корня;
  • Если D=0, то два одинаковых корня;
  • Если D

Решение уравнений с использование теоремы Виета (прямой и обратной)

1)Как известно, приведенное квадратное уравнение имеет вид:

Его корни удовлетворяют теореме Виета , которая при а=1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

А) Если свободный член q приведенного уравнения (1) положителен (q> 0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p.

Если p>0, то оба корня отрицательные, если p

х 2 -3x+2=0; x 1 = 2 bx 2 =1, так как q = 2>0 и q = 2 > 0 и p = – 3

х 2 +8х + 7 = 0; х 1 = – 7 и х 2 = – 1, так как q = 7 > 0 и p = 8 >0.

Б) Если свободный член q приведенного уравнения (1) отрицателен (q 0. Например, х 2 + 4х – 5 = 0; х 1 = – 5 и х 2 = 1, так как q = – 5 0; х 2 – 8х – 9 = 0; х 1 = 9 и х 2 = – 1, так как q = – 9 0.

2) Теорема Виета для квадратного уравнения ax 2 +bx+c=0 имеет вид :

Справедлива теорема, обратная теореме Виета:

Если х 1 и х 2 таковы, что х 1 +х 2 = -p, х 1 х 2 = q, то х 1 и х 2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

Попробуем найти два числа х 1 и х 2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

  1. Решить уравнение 😡 2 +3x-28

Попробуем найти два числа х 1 и х 2 , такие, что

Нетрудно заметить, что такими числами будут — 7 и 4. Они и являются корнями данного уравнения.

Нетрадиционных способы решения квадратных уравнений

1. Метод выделения полного квадрата

Решим уравнение х 2 + 6х — 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение х 2 + 6х в следующем виде: х 2 + 6х = х 2 + 2 • х • 3 .

В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х и 3. Поэтому, чтобы получить полный квадрат, нужно прибавить 3 2 , т.к.

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2 . Имеем:

х 2 +6х-7=х 2 +2• х • 3 +3 2 — 3 2 -7= (х+3) 2 — 9 -7= (х+3) 2 -16.

Таким образом, данное уравнение можно записать так:

(х+ 3) 2 -16 = 0, т.е. (х+ 3) 2 = 1б.

Следовательно, х + 3 = 4, х 1 = 1, или х +3 = -4 , х 2 = — 7.

2. Решение уравнений способом «переброски»

Рассмотрим квадратное уравнение

ах 2 +Ьх+ с= 0, а ≠ 0.

Умножая обе его части на а, получаем уравнение

а 2 х 2 + аЬх + ас = 0.

Пусть ах = у, откуда х = ; тогда приходим к уравнению

равносильному данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получим х 1 = и х 2 = . При этом способе коэффициент а умножается на свободный член, как 6ы «перебрасывается» к нему, поэтому его и называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

2х 2 — 11х + 15 = 0.

«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме у 1 = 6 х 1 = х 1 = 3

У 2 = 5 х 2 = х 2 = 2,5

3. Учёт свойств коэффициентов квадратного уравнения

А. Пусть дано квадратное уравнение

1. Если, а + Ь + с = 0 (т.е. сумма коэффициентов равна нулю), то

Доказательство . Разделим обе части уравнения на а ≠ 0, получим приведённое квадратное уравнение: х 2 + х + = 0.

Согласно теореме Виетаx 1 + x 2 = —

По условию, а + b + с = 0, откуда b = — a — с. Значит,

Получаем x 1 = 1, x 2 = , что и требовалось доказать.

2. Если, a — b + c = 0, или b = a + c, то x 1 = — 1, x 2 = — .

Доказательство. По теореме Виета

По условию, a — b + c = 0, откуда b = a + c . Таким образом,

т.е. х 1 = -1 и х 2 = , что и требовалось доказать.

1.Решим уравнение 345х 2 —137х — 208 = 0.

Решение. Так как а + b + с = 0 (345 — 137 — 208 = 0), то х 1 = 1, х 2 = = .

2. Решим уравнение 132x 2 + 247x + 115 = 0

Решение. Т.к. a – b + c = 0 (132 — 247 + 115 = 0 ), то x 1 = -1, x 2 = —

Б. Если второй коэффициент b = 2k – четное число, то формулу корней

X 1,2 = можно записать в виде х 1,2 =

Решим уравнение 3x 2 – 14x + 16 = 0

Решение. Имеем :a = 3, b = — 14, c = 16, k = — 7;

D=k 2 – ac = (-7) 2 – 3 • 16 = 49 -48 =1, D>0 , два различных корня ;

X = = ; X 1 = 2 , X 2 = .

В. Приведенное уравнение х 2 + px + q = 0

Совпадает с уравнением общего вида, в котором a=1, pи c = q. Поэтому для приведенного квадратного уравнения формула корней

принимает вид: x 1,2 = , или x 1,2 = — 2 – q. (2).

Формулу (2) особенно удобно использовать, когда p – чётное число.

1. Решим уравнение х 2 – 14х – 15 = 0.

Решение. Имеем: х 1,2 = 7 ± = 7 ± = 7 ± 8

Ответ. X 1 = 15, x 2 = -1.

4. Решение квадратного уравнения графическим способом

Если в уравнении : х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = — px – q.

Построим графики зависимости у = х2 и у = — px — q.

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая.

Возможны следующие случаи :

-прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут качаться (только одна общая точка), т.е. уравнение имеет одно решение;

-прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Решим графически уравнение : х 2 — 3х — 4 = 0

Решение. Запишем уравнение в виде : х 2 = 3х + 4.

Построим параболу у = х 2 и прямую у = 3х + 4.

Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13).

Прямая и парабола пересекаются в двух точках А и В с абсциссами х 1 = -1 и х 2 = 4.

Ответ.х 1 = -1, х 2 = 4.

5. Решение квадратных уравнений с помощью циркуля и линейки

Графический способ решения квадратных уравнений с помощью параболы не всегда удобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точность получаемых результатов невелика. Существует способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки.

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х 1 ; 0 ) и D (х 2 ; 0), где х 1 и х 2 — корни уравнения ах 2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х 1 х 2 / 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках В (х 1 ; 0) и D(х 2 ; 0), где х 1 и х 2 — корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох в точке В (х 1 ; 0), где х 1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

Решим уравнение х 2 — 2х — 3 = 0

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

Ответ: х 1 = — 1; х 2 = 3.

6. Решение квадратных уравнений с помощью номограмм

Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 ( см. Брадис В.М. Четырехзначные математические таблицы. — М, Просвещение, 1990).

Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициент там определить корни уравнения.

Криволинейная шкала номограммы построена по формулам

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Если дано полное квадратное уравнение, то его надо привести к приведенному квадратному уравнению z 2 + pz + q = 0

Затем второй коэффициент и свободный член из уравнения отметить на соответствующих осях p и q, полученные точки соединить прямой.

Прямая пересекает кривую шкалу в двух точках – корнях данного уравнения, если корни положительные.

  • Если уравнение имеет корни разного знака, то прямая пересечет кривую шкалу в одной точке – это положительный корень. Отрицательный корень находят, вычитая положительный корень из –p.
  • Если же корни отрицательные, то по номограмме находят два положительных корня t 1 и t 2 для уравнения z 2 – pz + q = 0, а для уравнения z 2 + pz + q = 0 корнями будут z 1 = -t 1 , z 2 = -t 2

1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0

2) Решим с помощью номограммы уравнение 2z 2 — 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение:

Номограмма дает корни z 1 = 4 и z 2 = 0,5.

3) Для уравнения z 2 — 25z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение t 2 — 5t + 2,64 = 0, которое решаем посредством номограммы и получим t 1 = 0,6 и t 2 = 4,4, откуда z 1 = 5t 1 = 3,0 и z 2 = 5t 2 = 22,0.

7. Геометрический способ решения квадратных уравнений

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми. Уравнение х 2 + 10х = 39

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39».

Строим квадрат со стороной х и на его сторонах – четыре прямоугольника высотой . В углах фигуры построим четыре квадрата со стороной . В углах фигуры построим четыре квадрата .

Подсчитаем площадь получившегося большого квадрата:

X 2 + 4 • • ( ) 2 = x 2 + 10x + ( ) 2 • 4

По условию x 2 + 10x = 39, т.е. площадь большого квадрата равна

39 + ( ) 2 • 4 = 39 + + 25 =64.

Значит, его сторона равна 8, тогда x + 2 • ( ) = 8, x = 3 (Ал–Хорезми не признавал отрицательных чисел)

А вот, например, как древние греки решали уравнение y 2 + 6y – 16 = 0

Решение представлено на рис., где у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = — 8.

8. Решение уравнений с использованием теоремы Безу

Теорема Безу. Если уравнение a 0 x n + a 1 x n-1 … + a n-1 x + a n = 0, где все коэффициенты целые, имеет целые корни, то это делители свободный член.

Следствие 2: Если b является корнем многочлена f (x), то этот многочлен делится на (x-b) без остатка.

Теорема Безу даёт возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше.

Таким образом, один корень найден и далее находятся уже корни многочлена, степень которого на единицу меньше степени исходного многочлена. Иногда этим приёмом – он называется понижением степени – можно найти все корни заданного многочлена.

Решить квадратное уравнение: х 2 – 4х + 3 = 0

Делители свободного члена ±1, ±3.

Проверим 1, подставив в уравнение 1 – 4 + 3 = 0. Значит 1 – это корень данного уравнения. Тогда квадратный трёхчлен х 2 — 4х + 3 делится нацело на (х-1).

Разделим f(x) на (x-1), получим:

Х 2 – 4х + 3 = (х-1)(х-3)

x – 1 = 0; х 1 = 1, или х-3=0, х 2 =3

Ответ: х 1 = 1, х 2 =3.

Человечество прошло длинный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание всё более полным и совершенным.

Уравнения – язык алгебры, квадратные уравнения – это фундамент, на котором построено величественное здание алгебры. Изученные способы решения квадратных уравнений будут применяться и при дальнейшем изучении математики, при решении уравнений, сводящихся к решению квадратных.

В ходе выполнения работы с поставленной целью и задачами я справилась, мне удалось обобщить и систематизировать изученный материал по выше указанной теме. Проанализировав все новые способы решения квадратных уравнений, стало очевидным, что нельзя однозначно сказать, какой именно метод наиболее удобен или совершенен. Некоторые ( такие как, решение с использованием теоремы Безу и решение с помощью циркуля и линейки) удобно применять, когда коэффициенты невелики, другие – допускают большие коэффициенты ( например, учёт коэффициентов): графический не всегда точен, а геометрический понятен, но громоздок. Можно сделать вывод, что все способы надо иметь в своем арсенале и применять их по мере необходимости с точки зрения рациональности решения.

Данная работа помогла мне обобщить способы решения квадратных уравнений, которые не изучают в школе. Нужно отметить, что не все они удобны для решения, но каждый из них уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на ОГЭ и ЕГЭ.

С результатами моей работы я познакомлю одноклассников и учеников других 8-х классов. Они могут воспользоваться собранными материалами для изучения и закрепления рациональных способов решения квадратных уравнений. В дальнейшем я планирую провести опрос, насколько интересна информация, предложенная в буклете, и используют ли они данные способы для решения квадратных уравнений, если да, то какой способ они считают наиболее простым и понятным.

1.Брадис В.М. Четырёхзначные математические таблицы для средней школы.

Изд. 57-е. – М., Просвещение, 1990. С. 83.

2.Окунев А.К. Квадратные функции, уравнения и неравенства. Пособие для учителя. – М., Просвещение, 1972.

3.Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. – М., Квант, № 4/72. С. 34.

4.Соломник В.С., Милов П.И. Сборник задач по алгебре и элементарными функциям. Пособие для учителя. Изд. 2-е. – М., Просвещение, 1970.


источники:

http://tvorcheskie-proekty.ru/node/3678

http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2018/09/26/nestandartnye-metody-resheniya-kvadratnyh