Проект по алгебре на тему квадратные уравнения

Квадратные уравнения. Способы решения.
проект по алгебре (8 класс)

Учебный материал представляет разнообразные способы решения квадратных уравнений (в том числе и нестандартные).

Скачать:

ВложениеРазмер
Учебный материал представляет разнообразные способы решения квадратных уравнений (в том числе и нестандартные).327.12 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

гимназия №19 им. Н.З. Поповичевой г. Липецка

Выполнили: Александрова Анастасия

учащиеся 8а класса

Руководитель проекта: Алябьева Елена Анатольевна

  1. Введение. 2
  2. Классические способы решения квадратных уравнений………………..3
  1. Решение квадратных уравнений по формулам. .4
  2. Графический способ решения квадратного уравнения……………….5

    Разложение левой части уравнения на множители………………. …..6

    1. Нестандартные способы решения квадратных уравнений………………. 8
    1. Геометрический способ решения квадратных уравнений …….……. 8
    2. Использование свойств коэффициентов квадратного уравнения……….8
    1. Выводы………………………………………………. …………. ……….…10
    2. Заключение………………………………………………………………….…12
    3. Библиографический список. 13

    В прошлом году темой нашего исследования была «Геометрическая алгебра древних греков». В процессе работы мы изучили способ решения квадратных уравнений с использованием метода геометрической алгебры Древней Греции. Задача решения квадратных уравнений заинтересовала нас, и мы решили поподробнее разобраться в этом вопросе уже в этом году. Так и возникла идея нашего проекта.

    Актуальность темы «Квадратные уравнения» заключается в том, что она является одной из самых важных в математике. Уравнения – это язык алгебры, квадратные уравнения – это фундамент, на котором построено величественное здание алгебры. Они находят широкое применение в разных разделах математики и применяются в других науках. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения.

    В школьном курсе изучаются формулы корней квадратного уравнения, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения. Это позволило нам выдвинуть гипотезу: существуют методы решения квадратных уравнений без использования формул, изучаемых в школьном курсе алгебры.

    Изученные способы решения квадратных уравнений будут применяться и при дальнейшем изучении математики, при решении уравнений, сводящихся к решению квадратных.

    Цель проекта: изучить разнообразные способы решения квадратных уравнений (в том числе и нестандартные) и создать сборник «Квадратные уравнения».

    1. Обобщить и систематизировать имеющийся материал о квадратных уравнениях и способах их решения.
    2. Изучить дополнительные литературу и источники информации.
    3. Установить связь между коэффициентами и корнями квадратного уравнения и найти нестандартные приемы решения некоторых квадратных уравнений.
    4. Систематизировать найденные способы решения квадратных уравнений.
    5. Разработать дидактический материал.
    1. Классические способы решения квадратных уравнений

    В школе изучаются классические способы решения квадратных уравнений с использованием формул корней квадратных уравнений, теоремы Виета. Также имеются и другие способы решения квадратных уравнений – графический, разложение квадратного трёхчлена на множители, выделение квадрата двучлена, которые также позволяют решать квадратные уравнения.

    Квадратным уравнением называют уравнение вида ах 2 + bх + с = 0, где коэффициенты, а, в, с- действительные числа, а ≠ 0.

    Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

    Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или/и с равен нулю.

    Корнем квадратного уравнения ах 2 + вх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + вх + с обращается в нуль.

    Решить квадратное уравнение — значит найти все его корни или установить, что корней нет.

    Ниже мы рассмотрим классические способы решения квадратных уравнений.

    Проект «Десять способов решения квадратных уравнений»

    Проектно исследовательская работа на тнму «10 способов решения квадратных уравнений». Учащимися рассматриваются основные способы и методы решения и применения квадратных уравнений.

    Просмотр содержимого документа
    «Проект «Десять способов решения квадратных уравнений»»

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

    Брянская область Жуковский район

    МОУ Ржаницкая средняя общеобразовательная школа

    Авторы: Курсин Дмитрий

    Павликов Дмитрий, 9 кл.

    Руководитель: Приходько Юрий
    Владимирович,

    БРЯНСК, 2009 год

    I. История развития квадратных уравнений ……………………….2

    1. Квадратные уравнения в Древнем Вавилоне………………………..2

    2. Как составлял и решал Диофант квадратные уравнения…………. 2

    3. Квадратные уравнения в Индии……………………………………. 3

    4. Квадратные уравнения у ал- Хорезми ………………………………4

    5. Квадратные уравнения в Европе XIII — XVII вв………………. 5

    II. Способы решения квадратных уравнений ……………………….7

    История развития квадратных уравнений.

    1. Квадратные уравнения в Древнем Вавилоне.

    Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

    Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

    Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

    Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

    2. Как составлял и решал Диофант квадратные уравнения.

    В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

    При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

    Вот, к примеру, одна из его задач.

    Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

    Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 — х. Разность между ними .

    Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

    Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

    Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

    3. Квадратные уравнения в Индии.

    Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

    В уравнении (1) коэфиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

    В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

    Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

    «Обезьянок резвых стая А двенадцать по лианам…

    Власть поевши, развлекалась. Стали прыгать, повисая…

    Их в квадрате часть восьмая Сколько ж было обезьянок,

    На поляне забавлялась. Ты скажи мне, в этой стае?»

    Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

    Соответствующее задаче 13 уравнение:

    Бхаскара пишет под видом:

    и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

    4. Квадратные уравнения у ал — Хорезми.

    В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

    2) «Квадраты равны числу», т.е. ах 2 = с.

    3) «Корни равны числу», т.е. ах = с.

    4) «Квадраты и числа равны корням», т.е. ах 2 + с = bх.

    5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

    6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

    Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал — Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

    Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень»

    (подразумевается корень уравнения х 2 + 21 = 10х).

    Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

    Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

    5. Квадратные уравнения в Европе XIII XVII вв.

    Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.

    Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:

    при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

    Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

    6. О теореме Виета.

    Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D, умноженное на A A 2 , равно BD, то A равно В и равно D».

    Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же В,D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

    Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

    Итак: Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

    В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрала каждый из них.

    1. СПОСОБ: Разложение левой части уравнения на множители.

    Решим уравнение х 2 + 10х — 24 = 0. Разложим левую часть на множители:

    х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

    Следовательно, уравнение можно переписать так:

    Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = — 12. Это означает, что число 2 и — 12 являются корнями уравнения х 2 + 10х — 24 = 0.

    2. СПОСОБ: Метод выделения полного квадрата.

    Решим уравнение х 2 + 6х — 7 = 0. Выделим в левой части полный квадрат.

    Для этого запишем выражение х 2 + 6х в следующем виде:

    В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

    Преобразуем теперь левую часть уравнения

    прибавляя к ней и вычитая 3 2 . Имеем:

    Таким образом, данное уравнение можно записать так:

    3. СПОСОБ: Решение квадратных уравнений по формуле.

    Умножим обе части уравнения

    на 4а и последовательно имеем:

    а) Решим уравнение: 2 + 7х + 3 = 0.

    D 0, два разных корня;

    Таким образом, в случае положительного дискриминанта, т.е. при

    б) Решим уравнение: 2 — 4х + 1 = 0,

    Итак, если дискриминант равен нулю, т.е. b 2 — 4ac = 0, то уравнение

    ах 2 + bх + с = 0 имеет единственный корень,

    в) Решим уравнение: 2 + 3х + 4 = 0,

    Данное уравнение корней не имеет.

    Итак, если дискриминант отрицателен, т.е. b 2 — 4ac , уравнение

    Формула (1) корней квадратного уравнения ах 2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

    4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

    Как известно, приведенное квадратное уравнение имеет вид

    Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

    Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

    а) Если сводный член q приведенного уравнения (1) положителен (q 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р , то оба корня отрицательны, если р , то оба корня положительны.

    б) Если свободный член q приведенного уравнения (1) отрицателен (q ), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p , или отрицателен, если p 0 .

    5. СПОСОБ: Решение уравнений способом «переброски».

    Рассмотрим квадратное уравнение

    Умножая обе его части на а, получаем уравнение

    Пусть ах = у, откуда х = у/а; тогда приходим к уравнению

    равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

    Окончательно получаем х1 = у1 и х1 = у2. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Решим уравнение 2 – 11х + 15 = 0.

    Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

    Согласно теореме Виета

    у1 = 5 х1 = 5/2 x1 = 2,5

    у2 = 6 x2 = 6/2 x2 = 3.

    6. СПОСОБ: Свойства коэффициентов квадратного уравнения.

    А. Пусть дано квадратное уравнение ах 2 + bх + с = 0, где а ≠ 0.

    1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,

    Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

    Согласно теореме Виета

    По условию а – b + с = 0, откуда b = а + с. Таким образом,

    Решим уравнение 345х 2 – 137х – 208 = 0.

    Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

    2)Решим уравнение 132х 2 – 247х + 115 = 0.

    Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

    Б. Если второй коэффициент b = 2k – четное число, то формулу корней

    Решим уравнение 3х2 — 14х + 16 = 0.

    В. Приведенное уравнение

    совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

    принимает вид:

    Формулу (3) особенно удобно использовать, когда р — четное число.

    Пример. Решим уравнение х 2 – 14х – 15 = 0.

    7. СПОСОБ: Графическое решение квадратного уравнения.

    Если в уравнении

    перенести второй и третий члены в правую часть, то получим

    Построим графики зависимости у = х 2 и у = — px — q.

    График первой зависимости — парабола, проходящая через начало координат. График второй зависимости —

    прямая (рис.1). Возможны следующие случаи:

    — прямая и парабола могут пересекаться в двух точках,

    абсциссы точек пересечения являются корнями квад- ратного уравнения;

    — прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;

    — прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

    1) Решим графически уравнение х 2 — 3х — 4 = 0 (рис. 2).

    Решение. Запишем уравнение в виде х 2 = 3х + 4.

    Построим параболу у = х 2 и прямую у = 3х + 4. Прямую

    у = 3х + 4 можно построить по двум точкам М (0; 4) и

    N (3; 13). Прямая и парабола пересекаются в двух точках

    2) Решим графически уравнение (рис. 3) х 2 — 2х + 1 = 0.

    Решение. Запишем уравнение в виде х 2 = 2х — 1.

    Построим параболу у = х 2 и прямую у = 2х — 1.

    Прямую у = 2х — 1 построим по двум точкам М (0; — 1)

    и N(1/2; 0). Прямая и парабола пересекаются в точке А с

    3) Решим графически уравнение х 2 — 2х + 5 = 0 (рис. 4).

    Решение. Запишем уравнение в виде х 2 = 5х — 5. Построим параболу у = х 2 и прямую у = 2х — 5. Прямую у = 2х — 5 построим по двум точкам М(0; — 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

    Ответ. Уравнение х 2 — 2х + 5 = 0 корней не имеет.

    8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и

    Графический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика.

    Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис. 5).

    Допустим, что искомая окружность пересекает ось

    Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

    Итак:

    1) построим точки (центр окружности) и A(0; 1);

    2) проведем окружность с радиусом SA;

    3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

    При этом возможны три случая.

    2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

    3) Радиус окружности меньше ординаты центра

    окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

    Решим уравнение х 2 — 2х — 3 = 0 (рис. 7).

    Решение. Определим координаты точки центра окружности по формулам:

    Проведем окружность радиуса SA, где А (0; 1).

    9. СПОСОБ: Решение квадратных уравнений с помощью

    Это старый и незаслуженно забыты способ решения квадратных уравнений,

    помещенный на с.83 (см. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990).

    Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен-

    там определить корни уравнения.

    Криволинейная шкала номограммы построена

    по формулам (рис.11):

    подобия треугольников САН и CDF получим

    откуда после подстановок и упрощений вытекает уравнение

    причем буква z означает метку любой точки криволинейной шкалы.

    1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0 (рис.12).

    2) Решим с помощью номограммы уравнение

    Разделим коэффициенты этого уравнения на 2,

    3) Для уравнения

    коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t,

    10. СПОСОБ: Геометрический способ решения квадратных

    В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

    1) Решим уравнение х 2 + 10х = 39.

    В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15).

    Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

    Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

    х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

    2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

    Решение представлено на рис. 16, где

    Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

    один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис.16).

    3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

    Преобразуя уравнение, получаем

    На рис. 17 находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

    Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств.

    Однако, значение квадратных уравнений заключается не только в изяществе и краткости решения задач, хотя и это весьма существенно. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.

    Хочется отметить и то, что излагаемая тема в этой работе еще мало изучена вообще, просто ею не занимаются, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней.

    Здесь мы остановилась на вопросе решения квадратных уравнений, а что, если существуют и другие способы их решения?! Опять находить красивые закономерности, какие-то факты, уточнения, делать обобщения, открывать все новое и новое. Но это вопросы уже следующих работ.

    Подводя итоги, можно сделать вывод: квадратные уравнения играют огромную роль в развитии математики. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза. Эти знания могут пригодиться нам на протяжении всей жизни.

    Так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должно заинтересовать увлекающихся математикой учеников. Наша работа дает возможность по-другому посмотреть на те задачи, которые ставит перед нами математика.

    1. Алимов Ш.А., Ильин В.А. и др. Алгебра, 6-8. Пробный учебник для 6-8 классовой средней школы. — М., Просвещение, 1981.

    2. Брадис В.М. Четырехзначные математические таблицы для средней школы.

    Изд. 57-е. — М., Просвещение, 1990. С. 83.

    3. Кружепов А.К., Рубанов А.Т. Задачник по алгебре и элементарным функциям. Учебное пособие для средних специальных учебных заведений. — М., высшая школа, 1969.

    4. Окунев А.К. Квадратичные функции, уравнения и неравенства. Пособие для учителя. — М., Просвещение, 1972.

    5. Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. — М., Квант, № 4/72. С. 34.

    6. Соломник В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. — 4-е, дополн. — М., Высшая школа, 1973.

    7. Худобин А.И. Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Изд. 2-е. — М., Просвещение, 1970.

    Проект по математике на тему: «Квадратные уравнения и способы их решения «

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    ОГАОУ ДПО «Белгородский институт развития образования»

    и способы их решения

    Кичигина Галина Михайловна

    МБОУ «Репьевская ООШ»

    Практически все, что окружает современного человека — это все так или иначе связано с математикой. А достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем решение многих практических задач сводится к решению квадратных уравнений.

    Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Они представляют собой большой и важный класс уравнений, которые решаются как с помощью формул, так и с помощью нестандартных способов. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных уравнений и неравенств.

    В школьном курсе математики мы изучили квадратные уравнения, узнали различные способы решения уравнений второй степени. Этот материал нас заинтересовал, и мы решили узнать, существуют ли другие способы решения квадратных уравнений. Это определило тему нашего исследования: «Квадратные уравнения и методы их решения».

    В учебниках мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Нам пришла идея рассмотреть те способы решения квадратных уравнений, на которые недостаточно времени уделено на уроках или совсем не рассматриваются в школьном курсе. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

    Цель исследования: изучение различных методов решения квадратных уравнений .

    Произвести анализ учебно – методической литературы по решению квадратных уравнений.

    Произвести анализ различных способов решения квадратных уравнений.

    Изучить различные способы решения квадратных уравнений , апробировать их на практике, собрать дидактический материал . (Приложения 1-3) .

    Гипотеза: существуют методы решения квадратных уравнений не изучаемые в школе.

    Новизна исследования состоит в комплексном рассмотрении способов решения уравнений второй степени.

    Объект исследования: квадратные уравнения.

    Предмет исследования: методы решения квадратных уравнений.

    Практическая значимость работы состоит в приобретении навыка решения квадратных уравнений различными способами.

    Применяемые методы исследования:

    1) эмпирические: изучение литературы, обработка материалов.

    2) теоретические: сравнение, классификация, анализ, обобщение.

    Структура работы: работа состоит из введения, теоретической и практической частей, заключения, списка литературы и приложения.

    1. История развития квадратных уравнений.

    Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Уравнения — это наиболее объёмная тема всего курса математики.

    В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37.», — поучал во II тысячелетии до новой эры египетский писец Ахмес.

    В древних математических задачах Междуречья, Индии . [4, c.23], Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

    Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) — собрание задач на составление уравнений с систематическим изложением их решений.

    Уравнения второй степени умели решать еще в древнем Вавилоне. Математики Древней Греции решали квадратные уравнения с помощью геометрических построений [4, c.21]; например, Евклид — при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактах.

    Вывод формулы решения квадратного уравнения в общем виде имеется у Виета. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

    1.1 Квадратные уравнения в Древнем Вавилоне

    Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: X 2 + X = ѕ; X 2 X = 14,5. [4, c.20]

    Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

    Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

    1.2 Как составлял и решал Диофант квадратные уравнения.

    В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.Вот, к примеру, одна из его задач.

    Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

    Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 — х. Разность между ними . Отсюда уравнение: (10 + х)(10 — х) = 96

    или же: 100 — х 2 = 96, х 2 — 4 = 0 (1) Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения: у(20 — у) = 96,

    Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

    1.3 Квадратные уравнения в Индии

    Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам» [4, c.23], составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 + b х = с, а > 0. (1)

    В уравнении (1) коэффиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

    В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму. Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

    «Обезьянок резвых стая А двенадцать по лианам…

    Власть поевши, развлекалась. Стали прыгать, повисая…

    Их в квадрате часть восьмая Сколько ж было обезьянок,

    На поляне забавлялась. Ты скажи мне, в этой стае?»

    Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

    Соответствующее задаче 13 уравнение: ( x /8) 2 + 12 = x .

    Бхаскара пишет под видом: х 2 — 64х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

    1.4 Квадратные уравнения у ал – Хорезми

    В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

    1) «Квадраты равны корнями», т.е. ах 2 + с = b х.

    2) «Квадраты равны числу», т.е. ах 2 = с.

    3) «Корни равны числу», т.е. ах = с.

    4) «Квадраты и числа равны корням», т.е. ах 2 + с = b х.

    5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

    6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

    Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал — Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

    Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

    Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

    Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

    1.5 Квадратные уравнения в Европе XIII XVII вв.

    Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII .

    Общее правило решения квадратных уравнений, приведенных к единому каноническому виду: х 2 + bx = с,при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

    Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

    1.6 О теореме Виета

    Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A A 2 , равно BD , то A равно В и равно D ».

    Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же В, D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b )х — х 2 = ab , т.е. х 2 — (а + b )х + а b = 0,то х1 = а, х2 = b .

    Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. [4, c.25]

    Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

    Способы решения квадратных уравнений.

    Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

    В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения ( Приложение 1).

    Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно остановимся на каждом из них.

    1 способ: разложение левой части уравнения на множители.

    Разложим левую часть на множители:

    х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

    Следовательно, уравнение можно переписать так:

    Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = — 12. Это означает, что число 2 и — 12 являются корнями уравнения х 2 + 10х — 24 = 0.

    2 способ: метод выделения полного квадрата.

    Решим уравнение х 2 + 6х — 7 = 0.

    Выделим в левой части полный квадрат.

    Для этого запишем выражение х 2 + 6х в следующем виде:

    В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 3 2 , так как х 2 + 2• х • 3 + 3 2 = (х + 3) 2 .

    Преобразуем теперь левую часть уравнения

    прибавляя к ней и вычитая 3 2 . Имеем:

    Таким образом, данное уравнение можно записать так:

    3 способ: решение квадратных уравнений по формуле.

    Умножим обе части уравнения

    на 4а и последовательно имеем:

    Примеры. Сколько корней имеет уравнение?

    D > 0, два разных корня;

    Таким образом, в случае положительного дискриминанта, т.е. при

    b 2 — 4 ac >0 , уравнение ах 2 + b х + с = 0 имеет два различных корня.

    Итак, если дискриминант равен нулю, т.е. b 2 — 4 ac = 0, то уравнение

    ах 2 + b х + с = 0 имеет единственный корень,

    Данное уравнение корней не имеет.

    Итак, если дискриминант отрицателен, т.е. b 2 — 4 ac

    уравнение ах 2 + b х + с = 0 не имеет корней.

    Формула (1) корней квадратного уравнения ах 2 + b х + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

    4 способ: решение уравнений с использованием теоремы Виета.

    Как известно, приведенное квадратное уравнение имеет вид

    Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

    Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

    а) Если сводный член q приведенного уравнения (1) положителен ( q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p . Если р > 0, то оба корня отрицательны, если р

    б) Если свободный член q приведенного уравнения (1) отрицателен ( q p p > 0 .

    5 способ: решение уравнений способом «переброски»( Приложение 2).

    Рассмотрим квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0.

    Умножая обе его части на а, получаем уравнение

    Пусть ах = у, откуда х = у/а; тогда приходим к уравнению

    При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Пример. Решим уравнение 2 – 11х + 15 = 0.

    Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

    Согласно теореме Виета

    6 способ: свойства коэффициентов квадратного уравнения (Приложение 2)

    А. Пусть дано квадратное уравнение

    1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1

    Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

    Согласно теореме Виета

    По условию а – b + с = 0, откуда b = а + с. Таким образом,

    Решим уравнение 345х 2 – 137х – 208 = 0.

    Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

    2)Решим уравнение 132х 2 – 247х + 115 = 0.

    Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

    Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

    Решим уравнение 3х2 — 14х + 16 = 0.

    В. Приведенное уравнение х 2 + рх + q = 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней принимает вид:

    Формулу (3) особенно удобно использовать, когда р — четное число.

    Пример. Решим уравнение х 2 – 14х – 15 = 0.

    7 способ: Графическое решение квадратного уравнения.

    Если в уравнении х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = — px q .

    Построим графики зависимости у = х 2 и у = — px — q .

    График первой зависимости — парабола, проходящая через начало координат. График второй зависимости — прямая (рис.1). Все данные вводим в программу«Advanced Grapher» и получаем ответы [13].

    Искомая окружность пересекает ось абсцисс в точках B (х1 ;0) и D (х2 ;0), где х1 и х2 – корни уравнения ах 2 + bх + с=0, и проходит через точки А (0;1) и С (0; ) на оси ординат. [5, c.34]

    Возможны следующие случаи:

    — прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

    — прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;

    — прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

    1) Решим графически уравнение х 2 — 3х — 4 = 0 (рис. 2).

    Решение. Запишем уравнение в виде х 2 = 3х + 4.

    Построим параболу у = х 2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Прямая и парабола пересекаются в двух точках А и В с абсциссами х1 = — 1 и х2 = 4.

    2) Решим графически уравнение (рис. 3) х 2 — 2х + 1 = 0.

    Решение. Запишем уравнение в виде х 2 = 2х — 1.

    Построим параболу у = х 2 и прямую у = 2х — 1.

    Прямую у = 2х — 1 построим по двум точкам М (0; — 1)

    и N (1/2; 0). Прямая и парабола пересекаются в точке А с

    3) Решим графически уравнение х 2 — 2х + 5 = 0 (рис. 4).

    Решение. Запишем уравнение в виде х 2 = 5х — 5. Построим параболу у = х 2 и прямую у = 2х — 5. Прямую у = 2х — 5 построим по двум точкам М(0; — 5) и N (2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

    Ответ. Уравнение х 2 — 2х + 5 = 0 корней не имеет.

    8 способ:: решение квадратных уравнений с помощью циркуля и линейки.

    Графический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика. Найти корни квадратного уравнения ах 2 + b х + с = 0 с помощью циркуля и линейки (рис. 5). [5, c.34]

    Центр окружности находится в точке пересечения перпендикуляров SF и SK , восстановленных в серединах хорд AC и BD , поэтому

    Итак: 1) построим точки (центр окружности) и A (0; 1);

    2) проведем окружность с радиусом SA ;

    3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

    При этом возможны три случая.

    2) Радиус окружности равен ординате центра ( AS = SB , или R = a + c /2 a ), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

    3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

    Пример. Решим уравнение х 2 — 2х — 3 = 0 (рис. 7).

    Решение. Определим координаты точки центра окружности по формулам:

    Проведем окружность радиуса SA , где А (0; 1).

    9 способ: решение квадратных уравнений с помощью номограммы.

    Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 (см. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990) [ 3, c.83] .

    Таблица XXII . Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен там определить корни уравнения.

    Криволинейная шкала номограммы построена по формулам (рис.11):

    Полагая ОС = р, ED = q , ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

    откуда после подстановок и упрощений вытекает уравнение

    причем буква z означает метку любой точки криволинейной шкалы.

    2) Решим с помощью номограммы уравнение

    Разделим коэффициенты этого уравнения на 2, получим уравнение

    3) Для уравнения

    10 способ: геометрический способ решения квадратных уравнений.

    В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

    1) Решим уравнение х 2 + 10х = 39.

    В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15).

    Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD , достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

    Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

    х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD , т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

    А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

    Решение представлено на рис. 16, где у 2 + 6у = 16,

    Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис.16).

    3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

    Преобразуя уравнение, получаему 2 — 6у = 16.

    На рис. 17 находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

    Подводя итоги, можно сделать вывод: квадратные уравнения играют огромную роль в развитии математики. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений. Хочется отметить и то, что излагаемая тема в этой работе еще мало изучена, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней. Здесь мы остановилась на вопросе решения квадратных уравнений, а что, если существуют и другие способы их решения?! Опять находить красивые закономерности, какие-то факты, уточнения, делать обобщения, открывать все новое и новое. Но это вопросы уже следующих работ. В результате изучения новых способов решения квадратных уравнений мы получили возможность решать уравнения не только по формуле, но и более интересными способами. Решили множество уравнений, изучили программу «Advanced Grapher».Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт. Данная исследовательская работа может быть использована учителями математики на уроках и элективных курсах по математике при изучении темы «Квадратные уравнения» (Приложения 1-3), учениками для расширения и углубления знаний по решению квадратных уравнений. Любой учащийся, используя эту исследовательскую работу, может самостоятельно изучить данную тему (Приложения 1-2).

    Так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должны заинтересовать увлекающихся математикой учеников, всё это нам даёт возможность по-другому посмотреть на те задачи, которые ставит перед нами математика.

    1. Алимов, Ш.А., Ильин В.А. и др. Алгебра, 6-8. / Пробный учебник для 6-8 классов средней школы. — М., Просвещение, 1981.

    2 . Арутюнян, Е.Б.Занимательная математика/ Е.Б. Арутюнян Москва «Аст – пресс» 1999.

    3. Брадис, В.М. Четырехзначные математические таблицы для средней школы. Изд. 57-е. — М., Просвещение, 1990. С. 83.

    4. Глейзер, Г.И. История математики в школе. 7-8 классы. – М., Просвещение, 1982.

    5. Окунев , А.К. Квадратичные функции, уравнения и неравенства. / Пособие для учителя. — М., Просвещение, 1972.

    6. Пресман, А.А. Решение квадратного уравнения с помощью циркуля и линейки. — М., Квант, № 4/72. С. 34.

    7. Соломник , В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. — 4-е, дополн. — М., Высшая школа, 1973.

    8. Худобин А .И. Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Изд. 2-е. — М., Просвещение,

    9.Пичурин, Л.Ф. За страницами учебника алгебры/ Л.Ф. Пичурин. Москва «Просвещение» 1990г.

    10.Энциклопедический словарь юного математика. – 2-е издание, испр. и доп. – М.:Педагогика, 1989.

    11.Энциклопедия для детей. Т.11. Математика.- М.: Аванта+, 1999.

    12.Ресурсы сети Интернет.

    13.Программы «Advanced Grapher» и «Открытая математика».

    Что необходимо знать для решения квадратных уравнений?

    О чем надо помнить решая квадратные уравнения?


    источники:

    http://kopilkaurokov.ru/matematika/prochee/proiekt_diesiat_sposobov_rieshieniia_kvadratnykh_uravnienii

    http://infourok.ru/proekt-po-matematike-na-temu-kvadratnie-uravneniya-i-sposobi-ih-resheniya-2328031.html