Проект по теме системы линейных уравнений

Прэктная работа по теме «Системна линейных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ЛУГАНСКОЙ НАРОДНОЙ РЕСПУБЛИКИ

МАЛАЯ АКАДЕМИЯ НАУК УЧАЩЕЙСЯ МОЛОДЕЖИ

Система линейных уравнений

Введение…………………………………………………………………………3
1.Система линейных уравнений с двумя переменными………………………7

Понятие о системах уравнений …………………………………………7

Способ алгебраического сложения………………………………………8

1.5.Геометрическая интерпретация решений системы
двух линейных уравнений с двумя неизвестными………………………11

4. Геометрическая интерпретация решения системы трех линейных
уравнений с тремя неизвестными……………………………………………………………………24

5.Решение систем линейных уравнений с параметрами………………………………..27

6.Решение систем уравнений на EXCEL…………………………………………………………….30

Список используемых источников……………………………………………….33

«Перед вами система линейных уравнений с двумя переменными Что скрывается за этими скупыми значками? Математик даст общий ответ: «Это система из двух линейных уравнений с двумя переменными. Но что она выражает, сказать не могу» Если обратиться за ответом к инженерам разных специальностей, то услышим разные ответы.

Инженер-электрик скажет, что передним уравнения напряжения или токов в электрической цепи с активными напряжениями.

Инженер-механик верен, что это уравнения равновесия сил для системы рычагов или пружин.

Инженер-строитель сообщит, что имеет дело с уравнениями, связывающими силы и деформации в какой-то строительной конструкции.

Инженер-плановик авторитетно заявит, что это уравнения для расчета загрузки станков. Так какой же из ответов правильный? Каждый из них верен. Да одна и та же система линейных уравнений может отображать равновесное состояние и электрической цепи, и рычагов, и строительной конструкции. Все зависит от того, что скрывается за постоянными коэффициентами и символами неизвестных — и.» (Пекелис1973,стр190-191)

Различные явления действительности имеют поразительное математическое сходство. Так о системе уравнений и применении её в различных сферах производства говорится в книге изданной почти полвека назад. За это время мир очень изменился.

Только о системах линейных уравнений не забыли. Наоборот с развитием экономики возросла необходимость прогнозировать экономические риски, востребован их анализ , которые делаются на основе решения систем линейных уравнений со многими переменными. Внимание к методам решения систем линейных уравнений только возрастает.

В нашем примере фигурируют только уравнения с двумя переменными, а ведь количество переменных и уравнений в системе может быть неограниченным. При решении теоретических и практических задач в науке, технике, производстве приходится иметь дело с системами уравнений с несколькими неизвестными.

Системы линейных уравнений приходят на помощь, когда приходится иметь дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, что сводит эти уравнения линейным.

Развитие экономики, повлекшее за собой необходимость решать задачи математической экономики, как правило, сводящихся к системе линейных уравнений с большим числом переменных обусловило поиск различных способов решений систем уравнений.

Для решения систем линейных уравнений с переменными с давних времен использовали исключения.

В XVII— XVIII вв. над решением систем линейных уравнений работали такие ученые, как Ферма, Ньютон, Лейбниц, Эйлер, Лагранж и другие.

Решение системы уравнений выраженное формулами , впервые использовал в 1675г. немецкий математик Г.Лейбниц, что способствовало развитию теории определителей.

Интересно, что определители были открыты дважды .Сначала — без теоретического обоснования, но с правилами практического применения —в древнем Китае, еще в начале нашей эры, а может и раньше. А уже в XVIII В. Метод определителей открыл Лейбниц в процессе разработки универсального метода решения систем линейных уравнений, что и привело к введению понятия определителей.

Из изучения определителей, решения систем линейных уравнений с многими переменными начинается очень важный раздел современной математики — линейная алгебра.

Сталкиваясь на уроках математики с системами линейных уравнений, мы их решали способом подстановки, сложения и иллюстрировали их решение с помощью графиков. Появилось желание узнать, а есть ли другие способы решения систем линейных уравнений и так ли сложно их освоить.

При выполнении этой работы была поставлена цель, изучить различные способы решения систем линейных уравнений с последующим оптимальным применением того или иного способа при дальнейшем решении систем.

Актуальность работы вызвана тем, что с помощью линейных уравнений математически модулируют все большее число процессов в технике, экономике, производстве, науке.

В работе ставились следующие задачи:

1.Изучить литературу по методам решения систем линейных алгебраических

2.Рассмотреть способы решения систем линейных алгебраических уравнений

1.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

Понятие о системах уравнений

Совокупность нескольких уравнений с несколькими переменными называют системой уравнений (неизвестное обозначенное одной и той же буквой в каждом из уравнений , должно обозначать одну и ту же неизвестную величину)

Система (1.1) где и — неизвестные, а —коэффициенты системы, а — свободные члены, называется системой двух линейных уравнений с двумя неизвестными.

Если , то система называется однородной, в остальных случаях — неоднородной.

Система называется совместной , если она имеет хотя бы одно решение, и называется несовместной , если у нее нет ни одного решения.
Совместная система вида называется определенной , если она имеет единственное решение; если у нее есть хотя бы два различных решения, то она называется неопределенной.

Решением системы уравнений с несколькими неизвестными называется совокупность значений этих неизвестных, обращающая каждое уравнение системы в тождество.

Решить систему уравнений, значит найти множество все её решений или показать, что она решений не имеет.

Не существует общего аналитического способа решения систем, все методы основаны на численных решениях. Основная задача при решении — это правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. В школьном курсе математики подробно описаны такие методы как алгебраическое сложение, подстановка, а так же графический способ.

Чтобы решить систему (1.1), из первого уравнения системы найдем при . Подставив найденное значение во второе уравнение системы (1.1), получим , откуда . Если , то . Тогда . Итак, решением системы при (1.1) является пара чисел

Блок-схема решения системы (1.1) способом подстановки представлена на схеме 1.1.

Пример 1. Решим систему уравнений:

Уравнения могут быть сложными, и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Способ алгебраического сложения

Чтобы решить систему (1.1) способом алгебраического сложения, умножим обе части первого уравнения на второго на . Получаем Полагая что система имеет решение, складываем левые и правые части уравнений системы; получаем откуда находим при . Аналогично поступаем, чтобы найти умножим обе части первого уравнения системы (1.1) на а второго на Получаем складываем левые и

правые части уравнений: откуда при . Таким образом, если .

Поскольку система уравнений решена в предположении, что она имеет решения, то необходимо подстановкой убедиться, что найденная пара чисел — решения этой системы.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять, когда в уравнениях присутствуют дроби и десятичные числа.

Блок-схема решения системы (1.1) способом сложения представлена на схеме 1.2.

Пример 2. Решим систему уравнений:

Умножим обе части первого уравнения системы на 3, а второго на -2. имеем: Почленно сложим левые и правые части полученных уравнений: Подставим найденное значение в одно из уравнений системы и решим его:

Чтобы решить систему (1.1) способом сравнения, найдем или из каждого уравнения системы: и . Приравнивая полученные для выражения , найдем , . Таким образом, система если , имеет решение

Блок-схема решения системы (1.1) способом сравнения представлена на схеме 1.3.

Пример 3. Решим систему уравнений:

Выразим переменную из каждого уравнения системы: и . Приравняв полученные выражения имеем Подставим найденное значение в первое уравнение получим

Геометрическая интерпретация решений системы двух линейных уравнений с двумя неизвестными

Если предположить, что в каждом уравнений системы, по крайней мере один из коэффициентов при переменных отличен от нуля, то каждое из уравнений является уравнением прямой линии.

Если определитель системы , то это означает, что если

1)все коэффициенты отличны от нуля, то и так как то обе прямые пересекаются в единственной точке, координаты которой и образуют решение системы. ( рис.1.1)

2) Если хотя бы один из коэффициентов при переменных равен нулю, например , то, по нашему условию, и, следовательно, (иначе ). Поэтому данная система равносильна системе уравнений перпендикулярных прямых (одна из которых параллельна оси ординат, другая — оси абсцисс), пересекающихся в одной точке. (рис.1.2).

Если же определитель системы равен нулю, то коэффициенты при переменных пропорциональны и, следовательно, либо система эквивалентна одному уравнению и обе прямые совпадают и система имеет бесконечное множество решений
(рис.1.3), либо система не имеет решений и обе прямые параллельны и не совпадают (рис.1.4)

Блок-схема геометрической интерпретации решений представлена на схеме 1.4

Блок-схема решения системы
двух линейных уравнений с двумя
переменными способом подстановки

Блок-схема решения системы
двух линейных уравнений с двумя
переменными способом сложения

Блок-схема решения системы
двух линейных уравнений с двумя
переменными способом сравнения

Выразить из каждого уравнения одну туже переменную

Сравнить полученные выражения, найти одну из переменных

Подставить найденное значение в любое уравнение , найти значение второй переменной

Рассмотрим решение систем линейных уравнений методом Гаусса. Пусть задана система трёх линейных уравнений с тремя неизвестными и: (3.1) .

Разделим обе части первого уравнения системы (3.1) на . Получим (3.2)

Умножим обе части уравнения (3.2) на и отнимим от второго уравнения системы (3.1). Получим:

Умножим обе части уравнения (3.2) на и отнимим от третьего уравнения системы (3.2). Получим: Имеем систему: Пусть Тогда (3.3)

Разделим обе части первого уравнения системы (3.3) на имеем Умножим обе части этого уравнения на отнимим его отвторого уравнения системы (3.3). Получим: Обозначим После проведенных преобразований получим систему треугольного

вида:

Теперь, начиная с последнего уравнения, легко определить значения всех переменных. Если то средикоэффициентов системы (3.1) при существует хотя бы один, отличный от нуля. Это уравнение и считается первым.

Пример 1. Решите систему уравнений

Умножим обе части первого уравнения системы на 2 и отнимим его от второго уравнения, потом обе части первого уравнения умножим на 4 и отнимим его от третьего. Имеем систему Эта система имеет бесконечно много решений. Выразим через Подставив в первое уравнение исходной системы, имеем: Таким образом система имеет бесконечно много решений.

Ответ: ,

Пример2. Решите систему уравнений

Умножим обе части первого уравнения системы на 2 и отнимим его почленно от второго уравнения, потом отнимем первое уравнение от третьего. Получим систему уравнений Теперь прибавим второе и третье уравнения полученной системы. Имеем Поскольку третье уравнение системы не имеет решений , то система несовместна.

Ответ : система несовместна.

Одним из наиболее распространенных методов решения линейных систем является метод Крамера.

Рассмотрим систему двух линейных уравнений с двумя неизвестными и : Числа называют коэффициентами системы, а — свободными членами. При решении системы линейных уравнений методом сложения были найдены следующие решения ; .

Проанализировав полученные результаты, можно установить правило, по которому составлены выражения для нахождения и. Коэффициенты системы образуют таблицу , которую называют квадратной матрицей второго порядка.

Число называют определителем этой матрицы. Его обозначают так: . Это определитель второго порядка, его называют определителем системы

Определитель второго порядка можно вычислить по схеме: =.

Обратим внимание на числители в формулах, полученных для нахождения и . Их тоже можно рассм атривать как определители второго порядка. Обозначаются они ; .

Теперь можно записать: ; .

Полученные формулы называют формулами Крамера. Анализируя их, видим, что при решении системы возможны такие случаи.

1.. Система имеет единственное решение; ; .

2.; ; . Система не имеет решений.

3. ;; . Система имеет бесконечно много решений.

Пример 1. Решите систему уравнений

;

; .

Следовательно, ; .

Ответ:.

Пример 2. Решите систему уравнений

;

; .
Следовательно, данная система имеет бесконечно много решений. Любое из них можно получить, взяв произвольное значение , а потом выразивши из уравнения. Например, если , то То есть пара — одно из решений системы.

Ответ: система имеет множество решений.

Пример 3. . Решите систему уравнений

;

; .

Следовательно, данная система не имеет решений.

Ответ: система несовместна.

Формулы Крамера можно обобщить на случай системы трех линейных уравнений с тремя неизвестными.

Рассмотрим систему

— коэффициенты системы; — свободные члены системы

Запишем, как и в системе с двумя неизвестными, таблицу коэффициентов системы — квадратную матрицу третьего порядка: .

Число = называют определителем этой матрицы.

Вычисление определителя третьего порядка можно выполнить по такой схеме:

.

Следовательно, ; ;.

То есть если , то решением системы будет тройка чисел , таких, что ; ; .

Эти формулы так же называют формулами Крамера.

Пример 4. . Решите систему уравнений

;

; =- 4 ; .

Отсюда, ; ; .

Ответ: .

Пример 5. . Решите систему уравнений

Решение ; ; ; .

Ответ:

Пример 6. Решите систему уравнений

;

; ; .

Система не имеет решений.

Ответ: система несовместна.

Пример 7 Решите систему уравнений

Решение ; ;

;

Ответ: система имеет множество решений.

4.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ РЕШЕНИЙ СИСТЕМЫ ТРЕХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ТРЕМЯ НЕИЗВЕСТНЫМИ

Известно, что всякое линейное уравнение, (4.1) у которого хотя бы один из коэффициентов при переменных отличен от нуля, изображает в координатном пространстве плоскость. Более точно: в координатном пространстве существует такая плоскость , координаты каждой точки которой удовлетворяют уравнению (4.1), и, наоборот, всякая точка, координаты которой удовлетворяют уравнению (4.1), лежат в плоскости

Будем предполагать, что в каждом уравнении системы трех линейных уравнений (4.2) хотя бы один из коэффициентов при переменных отличен от нуля. Тогда каждое из этих уравнений является уравнение плоскости в координатном пространстве, и, следовательно, множество решений этой системы является множеством всех точек координатного пространства, лежащих в каждой из этих плоскостей, и, значит, совпадает, с их пересечением. Пусть первое уравнение системы является уравнением плоскости , второе — плоскости , третье —плоскости.

Решая систему (4.2) методом последовательного исключения переменных, мы получим треугольную систему, либо равносильную систему, в которой число уравнений меньше числа переменных и среди уравнений системы нет противоречивых уравнений, либо систему, в которой одно из уравнений противоречиво.

Рассмотрим геометрический смысл каждого из случаев.

1)Если данная система равносильна треугольной, то она имеет единственное решение. Геометрически это означает, что все три плоскости пересекаются в одной точке (рис.1).

2) а)Если данная система равносильна системе, состоящей из одного уравнения, то она имеет бесконечное множество решений, лежащих в одной плоскости. Геометрически это означает, что все три плоскости совпадают.

Пример1.

Проект по теме системы линейных уравнений

Метод решения системы линейных уравнений методом Гаусса. (Прикладное программирование.)

Автор работы награжден дипломом победителя II степени

Паспорт проектной работы

Название проекта: Решение системы линейных уравнений методом Гаусса.

Учебный предмет, в рамках которого проводится проект: информатика.

Возраст учащихся, на которых рассчитан проект:15-16 лет.

Состав проектной группы: ученик 10 «А» класса

Тип проекта:

По характеру результатов: практико-направленный;

По форме: практикозначимый;

По профилю: межпредметный;

По числу участников: индивидуальный;

По продолжительности: долгосрочный;

На основе материалов: исследовательский, информационный, практико-направленный.

Цель проекта: Создать программу, решающую систему линейных уравнений, использующая метод Гаусса.

Задачи проекта:

Изучение литературы по языку программирования паскаль и линейным уравнениям.

Составление алгоритма решения линейных уравнений методом Гаусса

Написание программы, находящей неизвестные члены в системе уравнений.

Вопрос проекта: Можно ли написать данную программу в программном обеспечении Pascal ABC.

Предполагаемый продукт проекта: программа, реализующая метод Гаусса.

Этапы работы над проектом:

Первый этап (сентябрь) : изучение литературы по теме линейные уравнения, методы решения линейных уравнений, метод Гаусса, программирование на языке Паскаль.

Второй этап (октябрь): составление математической модели решения линейных уравнений методом Гаусса.

Третий этап (ноябрь): составление алгоритма решения линейных уравнений методом Гаусса в виде блок-схем.

Четвертый этап (декабрь): написание программы по составленным блок-схемам на языке программирования Паскаль.

Пятый этап (январь): разбитие проекта на несколько частей, для того, чтобы было удобнее работать с ним.

Шестой этап (февраль): проверка работоспособности программы, составление тестов, тестирование программы, первоначальная отладка полученной программы.

Седьмой этап (март): окончательная доработка и отладка программы.

Актуальность: Применение теоретических знаний при решении задач различной направленности.

Материально-техническое обеспечение: ПК с ОС Windows 10, ABC Паскаль, MS Word.

При изучении предмета информатика в школе, разделу алгоритмизация и программирование отводится достаточно много времени. В заданиях ЕГЭ задачи по программированию встречаются на всех уровня сложности. Проблема, тем не менее, в том, что эта тема очень сложна для понимания учениками.

Актуальность данной работы заключается в том, что на своем примере, я захотел показать, как можно не просто изучить язык программирования , но и применить свои знания при решении математических задач.

Цель проекта: Создать программу, решающую систему линейных уравнений, использующая метод Гаусса.

Изучение литературы по языку программирования паскаль и линейным уравнениям.

Составление алгоритма решения линейных уравнений методом Гаусса

Написание программы, находящей неизвестные члены в системе уравнений.

Линейные уравнения. Что это такое? Линейное уравнение – это алгебраическое уравнение, один или несколько членов которого неизвестны.

Такие уравнения являются обычным явлением в школе.

В школах также часто встречаются системы уравнений. Одной из них является система линейных уравнений. Также решение такой системы (линейных уравнений) используется для дешифрования сообщений. Как же решить эти системы уравнений?

Ответ на этот вопрос я нашел в книгах: Бахвалова Н.С., Жидкова Н.П., Кобелькова Г.Г. Численные методы., Волкова Е.А. Численные методы. Особенности метода Гаусса я изучил в пособии Н. Ш. Кремера, «Метод Гаусса». А тонкости программирования очень доступно объяснены в книге Рода Стивенса «Алгоритмы. Теория и практическое применение».

Практическая значимость работы заключается в том, что данную программу можно использовать для обучения детей, при углубленном изучении математики и программирования. Также отдельные части проекта можно использовать как подведение итога обучения информатики у учеников старших классов. При желании код программы можно применять студентам математикам для проверки своих математических вычислений при решении системы линейных уравнений. Стоит отметить тот факт, что данная работа может быть реализована на разных языках программирования.

1.Методы решений системы уравнений

Наиболее часто применимым является метод подстановки (в нём обычно мы выражаем одну переменную через другую и уже подставим переменную решаем обычное уравнение с одной неизвестной)

Часто встречается и метод сложения(данный метод обычно применяется в тех способах, если у двух уравнений есть неизвестные с одинаковым показателем, и путём сложения их можно убрать)

Метод введения новых переменных (используется редко и обычно применяется в тех случаях, если нам нужно заменить отношение двух неизвестных на некоторую новую переменную, например, t)

Графический метод решения (используется редко, но употребляется. Обычно такие системы сразу видно, например, уравнение круга на координатной плоскости x^2+y^2=9; или обычное уравнение прямой x+y=-3)

Есть метод подбора (это самый первый способ, который дети изучают в школах, но при этом он почти не используется в дальнейшем)

Также существует метод с определителем(редко используем, но эффективен)

Метод Гаусса (данный метод очень лёгок и понятен, он часто используется в программировании)

Метод Гаусса мы и рассмотрим в данной работе.

2.Возможные случаи решений системы линейных уравнений

У уравнений может быть несколько вариантов решений. Всё это зависит от значений переменных.

Возьмём некоторую систему уравнений:

Истекая из значений коэффициентов(a1,b1,a2,b2) перед неизвестными членами(x,y)

Одним из таких вариантов является случай, когда у выражений вообще нет решений(a1=a2=b1=b2=0 c1≠0 c2≠0)

Также встречаются ситуации, когда у системы целая плоскость является решением(a1=a2=b1=b2=c1=c2=0)

Случай, когда решением системы является прямая – частое явление(a1/a2=b1/b2=c1/c2)

Есть вариант, где нет решения поскольку прямые параллельны (a1/a2=b1/b2≠c1/c2)

И наконец, одно решение(a1*b2-a2*b1≠0)

В пятом случае как раз и применяется метод Гаусса.

Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.[2]

История

Хотя, в настоящее время, данный метод повсеместно называется методом Гаусса, он был известен и до К. Ф. Гаусса. Первое известное описание данного метода — в китайском трактате «Математика в девяти книгах», составленном между I в. до н.э. и II в. н. э.[1]

Описание метода

Первым делом система приводится к ступенчатому виду(каждый последующий член должен быть равен 0. Например, в системе два уравнения, тогда в первом уравнении будет оба неизвестных члена, а во втором – только второй). Затем находится каждый последующий член, начиная с конца.

Покажем, как методом Гаусса можно решить следующую систему:

Обнулим коэффициенты при во второй и третьей строчках. Для этого вычтем из них первую строчку, умноженную на и , соответственно:

Теперь обнулим коэффициент при в третьей строке, вычтя из неё вторую строку, умноженную на :

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

Y=3 из второго, подставив полученное

y=3, x=2 из первого, подставив полученные и .

Таким образом исходная система решена.

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

Достоинства метода

Менее трудоёмкий по сравнению с другими методами.

Позволяет однозначно установить, совместна система или нет, если совместна, найти её решение.

Программирование

Данный метод будет запрограммирован в Паскале. В основном буду использоваться условные оператору и циклы с определённым количеством действий.

В начале программы отсеиваются варианты, в которых нет решений.

А в случаях, где вариантами решений являются плоскости или прямые, выводятся не результаты, а ответы «решением является плоскость//прямая».

В случае несоответствия с этими требованиями, начинается анализ компонентов цикла(а именно коэффициентов перед неизвестными). После каждого условия наша блок схема всё увеличивается и увеличивается, приходя к логическому концу – выводу результатов(двух неизвестных).

Текст (код) программы на языке программирования Паскаль приведён в приложении 1 к проекту.

В ходе работы над проектом я увидел, что построение алгоритмов очень увлекательно. Кроме этого, я увидел реальное применение такой науки как программирование. Меня очень увлек процесс приобретения новых знаний, которые я добывал самостоятельно. Поэтому я решил не останавливаться на этом. Решение систем линейных уравнений с булевыми переменными будет темой моего следующего проекта.

В данной работе был рассмотрен метод Гаусса. Была построена блок-схема и составлена программа на языке программирования Паскаль, работающая по данному методу.

В заключение, я хочу сказать, что реализовав данный проект, я добился следующих результатов : во-первых, я написал программу, которая решает математическую задачу, а значит достиг своей цели, во-вторых, мне удалось изучить тонкости языка программирования за то время пока я занимался данным проектом, данная работа не прекращается и по сей день, в третьих, в ходе реализации некоторых моментов решения я сталкивался с проблемами, для решения которых приходилось самому придумывать и реализовывать алгоритмы, а значит углубляться и улучшать свои знания в математике и информатике.

Гаусс, Карл Фридрих (1777—1855) — немецкий математик, физик и астроном.

Н. Ш. Кремер, «Метод Гаусса», М.: Физматлит ,2009.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.Г. Численные методы. — 8-е изд.. — М.: Лаборатория Базовых Знаний, 2000.

Волков Е.А. Численные методы. — М.: Физматлит, 2003.

Род Стивенс. «Алгоритмы. Теория и практическое применение».

program progect_in_university;

const

var

a: array [1..n, 1..n] of real;

b: array [1..n] of real;

x: array [1..n] of real;

begin

for i := 1 to ndo

for j := 1 to ndo read(a[i, j]);

writeln(‘введите сколько свободных членов’);

for i := 1 to ndo read(b[i]);

for i := 1 to ndo

begin

for j := i + 1 to ndo

begin

a[j, i] := -a[j, i] / a[i, i];

for k := i + 1 to ndo a[j, k] := a[j, k] + a[j, i] * a[i, k];

b[j] := b[j] + a[j, i] * b[i];

end;

end;

for i := n — 1 downto 1 do

begin

for j := I + 1 to ndo

end;

for i := 1 to ndo

Проект по теме: Реализация требований ФГОС ООО при обучении учащихся 7 класса теме «Системы линейных уравнений»
проект по алгебре на тему

ГБОУ ВПО МО «Академия социального управления» дополнительное профессиональное образование

Скачать:

ВложениеРазмер
proekt.docx365.08 КБ

Предварительный просмотр:

ГБОУ ВПО МО «Академия социального управления»

дополнительное профессиональное образование

кафедра математических дисциплин

Реализация требований ФГОС ООО при обучении учащихся 7 класса

теме: «Системы линейных уравнений»

Выполнил слушатель учебного курса

«Актуальные проблемы развития профессиональной компетентности учителя математики (в условиях реализации ФГОС)»

учитель математики МОУ СОШ № 13 г.Люберцы

Завгородняя Инна Сергеевна

Преподаватель курса: Кашицына Юлия Николаевна, кандидат педагогических наук

г. Люберцы 2014г.

ГЛАВА 1. Теоретические основы обучения теме «Системы линейных уравнений»4

§ 1. Концепции духовно-нравственного развития и воспитания личности гражданина России 4

§ 2. Логико-математический анализ содержания темы «Системы линейных уравнений» 11

§ 3. Примеры решения типовых заданий и задач по теме «Системы линейных уравнений», направленных на развитие и формирование УУД.18

ГЛАВА 2. Методические рекомендации обучения теме «Системы линейных уравнений». 26

§ 4. Цели обучения теме «Системы линейных уравнений» 26

§ 5. Учебный план темы «Системы линейных уравнений». 34

§ 6. Примеры реализации целей обучения теме «Системы линейных уравнений»44

Современному обществу требуется активная, самостоятельная личность, которая способна принимать ответственные решения в быстроменяющихся условиях.

Перед педагогической наукой встает вопрос как же воспитать такую личность? Ответ на этот вопрос отражается в федеральных государственных

образовательных стандартах основного общего образования. Главной целью

образования становится не передача знаний и социального опыта, а развитие

личности ученика, его способности самостоятельно ставить учебные цели,

проектировать пути их реализации, контролировать и оценивать свои достижения, иначе говоря –формирование умения учиться.

Как говорил Л.В. Выгодский, формирование любых личностных

новообразований − умений, способностей, личностных качеств (в том числе и универсальных учебных действий, и умения учиться в целом), возможно только в деятельности. Поэтому цели обучения математике определяются ФГОС, в котором особое место отводится задаче формирования у учащихся универсальных учебных действий: личностных, регулятивных, познавательных, коммуникативных.

В современном обществе мало обладать определенной суммой знаний. В связи с этим главной задачей учителя новой школы становится воспитание человека с современным мышлением, способного реализоваться в

жизни. Человека, который может

∙анализировать свои действия;

∙самостоятельно принимать решения, прогнозируя их возможные

∙быть способным к сотрудничеству;

∙обладать чувством ответственности за судьбу страны, ее социально экономическое процветание.

Данный проект разработан в соответствии с требованиями ФГОС, в

котором рассматриваются психолого-педагогические основы обучения теме

«Системы линейных уравнений», связанные с реализацией ФГОС ООО.

Цель проекта : Реализация требований ФГОС ООО при изучении темы:

Для достижения поставленной цели необходимо решение следующих задач.

1. Выявить теоретические основы обучения теме, связанные с реализацией ФГОС ООО.

2. Выполнить отбор средств обучения теме, в том числе средства ИКТ

3. Разработать таблицу целей и карту обучения теме.

4. Составить учебную рабочую программу « Тематическое и почасовое планирование образовательных результатов освоения математики (в соответствии с темой).

5. Разработать методические рекомендации обучения теме и применить их в учебном процессе (фрагментов двух – трёх уроков, иллюстрирующих развитие и формирование УУД при обучении данной теме школьного курса математики).

Решение поставленных задач потребовало использования следующих методов исследования: анализ психолого-педагогической, математической и методической литературы по проблеме исследования, учебников и учебных пособий по математике; беседы с учителями, тестирование учащихся, проведение опытной проверки.

ГЛАВА 1. Теоретические основы обучения теме «Системы линейных уравнений»

§ 1. Концепция духовно-нравственного развития и воспитания личности гражданина России

Образованию отводится ключевая роль в духовно-нравственной консолидации российского общества, его сплочении
перед лицом внешних и внутренних вызовов, в укреплении социальной солидарности, в повышении уровня доверия человека
к жизни в России, к согражданам, обществу, государству, настоящему и будущему своей страны.

Концепция определяет: характер современного национального воспитательного идеала; цели и задачи духовно-нравственного развития и воспитания детей и молодежи; систему базовых национальных ценностей, на основе которых возможна духовно-нравственная консолидация многонационального народа Российской Федерации; основные социально-педагогические условия и принципы духовно-нравственного развития и воспитания обучающихся.

Цели и структура федеральных государственных образовательных стандартов общего образования второго поколения. Системно-деятельностный подход как методологическая основа ФГОС ООО. Фундаментальное ядро как средство универсализации содержания общего образования. Основная образовательная программа основного общего образования. Требования к структуре основной образовательной программы основного общего образования. Требования к условиям реализации основной образовательной программы основного общего образования. Требования к результатам освоения основной образовательной программы основного общего образования. Универсальные учебные действия и их формирование в основной школе.

Стандарт устанавливает требования к результатам освоения обучающимися основной образовательной программы основного общего образования:

личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, социальные компетенции, правосознание, способность ставить цели и строить жизненные планы, способность к осознанию российской идентичности в поликультурном социуме;

метапредметным , включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике, самостоятельность планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, построение индивидуальной образовательной траектории;

предметным, включающим освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.

Содержание ФГОС ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Переход к новому Федеральному государственному образовательному стандарту (ФГОС), который предполагает качественно новую модель образования. У многих возникает вопрос: нужна ли такая кардинальная перестройка в образовании? Безусловно, введение ФГОС нового поколения актуально, необходимо.

Социально-экономические, научно-технические, экологические и социально-культурные изменения, происходящие в нашей стране, неизбежно влекут за собой радикальные изменения в образовании. Темпы обновления знаний настолько высоки, что на протяжении жизни человеку приходится неоднократно переучиваться, овладевать новыми профессиями. Непрерывное образование становится реальностью и необходимостью. Развитие СМИ и сети Интернет приводит к тому, что школа перестает быть единственным источником знаний и информации для школьника. В чем же теперь заключается роль школы?

Одна из отличительных черт нового Федерального государственного стандарта – смена акцентов: вместо регламентации содержания, которое должно быть изложено учителем на уроках ученикам главным становятся те образовательные результаты, которых они должны достичь в результате своей учебной деятельности. Главной целью образования становится не передача знаний и социального опыта, а развитие личности ученика, его способности самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения, иначе говоря – формирование умения учиться.

В примерной программе по математике сохранена традиционная для российской школы ориентация на фундаментальный характер образования, на освоение школьниками основополагающих понятий и идей, таких, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование. Эта программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности.

Вместе с тем подходы к формированию содержания школьного математического образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня. В Примерной программе основного общего образования по математике иначе сформулированы цели и требования к результатам обучения, что меняет акценты в преподавании; в нее включена характеристика учебной деятельности учащихся в процессе освоения содержания курса.

Система математического образования в основной школе должна стать более динамичной за счет вариативной составляющей на всем протяжении второй ступени общего образования. В примерной программе по математике предусмотрено значительное увеличение активных форм работы, направленных на вовлечение учащихся в математическую деятельность, на обеспечение понимания ими математического материала и развития интеллекта, приобретение практических навыков, умений проводить рассуждения, доказательства. Наряду с этим в ней уделяется внимание использованию компьютеров и информационных технологий для усиления визуальной и экспериментальной составляющей обучения математике.

ФГОС второго поколения призван обеспечивать развитие системы образования в условиях изменяющихся запросов личности и семьи, ожиданий общества и требований государства в сфере образования.

Жизнь не стоит на месте. Меняются дети, меняется школа. Учитель в постоянном поиске: как научить ученика мыслить и действовать самостоятельно?

Ведь в современном мире умение мыслить самостоятельно, опираясь на знания и опыт, ценится гораздо выше, чем просто эрудиция, владение большим объемом знаний без умения применять эти знания для решения жизненных проблем.

Формировать у ребенка, пришедшего в школу, правильную гражданскую активную позицию, учить его искать, думать, творить, делать — именно на эти важные задачи и направлен новый ФГОС.

Фундаментальное ядро содержания общего образования

Математика ― наука о наиболее общих и фундаментальных структурах реального мира, является важнейшим источник принципиальных идей для всех естественных наук и современных технологий. Весь научно-технический прогресс человечества напрямую связан с развитием математики. Поэтому, с одной стороны, без знания математики невозможно выработать адекватное представление о мире. С другой стороны, математически образованному человеку легче войти в любую новую для него объективную проблематику.

Математика позволяет успешно решать практические задачи: оптимизировать семейный бюджет и правильно распределять время, критически ориентироваться в статистической, экономической и логической информации, правильно оценивать рентабельность возможных деловых партнеров и предложений, проводить несложные инженерные и технические расчеты для практических задач.

Математическое образование — это испытанное столетиями средство интеллектуального развития в условиях массового обучения. Такое развитие обеспечивается принятым в качественном математическом образовании систематическим, дедуктивным изложением теории в сочетании с решением хорошо подобранных задач. Успешное изучение математики облегчает и улучшает изучение других учебных дисциплин.

Математика — наиболее точная из наук. Учебный предмет «Математика» обладает исключительным воспитательным потенциалом: воспитывает интеллектуальную корректность, критичность мышления, способность различать обоснованные и необоснованные суждения, приучает к продолжительной умственной деятельности.

Для многих школьная математика является необходимым элементом предпрофессиональной подготовки. В связи с этим принципиально важно согласование математики и других учебных предметов. Хотя математика — единая наука без четких граней между разными ее разделами, ниже информационный массив курса в соответствии с традицией разбит на разделы: «Арифметика», «Алгебра», «Геометрия», «Математический анализ», «Вероятность и статистика». Вместе с тем предполагается знакомство с историей математики и овладение следующими общематематическими понятиями и методами:

  • Определения и начальные (неопределяемые) понятия. Доказательства; аксиомы и теоремы. Гипотезы и опровержения. Контрпример. Типичные ошибки в рассуждениях.
  • Прямая и обратная теорема. Существование и единственность объекта. Необходимое и достаточное условие верности утверждения. Доказательство от противного. Метод математической индукции.
  • Математическая модель. Математика и задачи физики, химии, биологии, экономики, географии, лингвистики, социологии и пр.

§ 2. Логико-математический анализ содержания темы.

Образовательными и воспитательными целями при обучении учащихся 7 класса теме «Системы линейных уравнений» является:

  • продолжение формирования представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • продолжение овладения математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественных дисциплин;
  • раскрытие конструктивной природы математических понятий;
  • построение системы математических правил на основе логической связи их между собой;
  • раскрытие операционного состава единого математического приема неполной индукции, используемого при доказательстве основного содержания изучаемой темы;
  • воспитание средствами математики культуры личности,
  • понимание значимости математики для научно-технического прогресса;
  • отношение к математике как к части общечеловеческой культуры через знакомство с историей развития математики.

Ориентация учебного процесса на достижение данных целей позволяет учителю концентрировать внимание на главном, определять порядок и перспективы работы, осуществлять ясность и гласность в совместной работе учителя и учащихся. Это дает учителю возможность разъяснять учащимся ориентиры в их общеучебной работе, создавать эталоны оценки результатов обучения.

Материал данной темы составляет важную часть школьного курса математики, что и определяет цели ее изучения: в процессе обучения происходит ознакомление обучающихся с основами наук; развивается логическое мышление, формируются и закрепляются вычислительные навыки. Материал данной темы находит широкое применение при изучении других тем школьного курса математики, так же и других смежных дисциплин, помогают тем самым реализовать межпредметные связи.

Изучение данной темы способствует развитию алгоритмической культуры, критичности мышления. В процессе обучения закрепляется, углубляется и повторяется пройденный материал, решаются разнообразные практические задачи.

При изучении теме «Системы линейных уравнений» можно выделить основные направления ее развертывания в школьном курсе математики:

  • теоретико — математическая, которая раскрывается в двух аспектах: в изучении наиболее важного класса линейных уравнений, в изучении обобщенного приема и методов решения систем линейных уравнений.
  • эффективное средство закрепления, углубления, повторения и расширения теоретических знаний;
  • развитие творческой математической деятельности обучающихся.

Для обучения данной темы по учебнику: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. «Алгебра 7 класс» отводится 17 часов при 4 уроках алгебры в неделю.

1) П 40. Линейное уравнение с двумя переменными – 2 часа;

2) П 41. График линейного уравнения с двумя переменными – 2 часа;

3) П 42. Системы линейных уравнений с двумя переменными – 2 часа;

4) П 43. Способ подстановки – 3 часа;

5) П 44 Способ сложения – 2 часа;

6) П 45 Решение задач с помощью систем уравнений – 5 часов;

Контрольная работа – 1 час.

Обучение теме «Системы линейных уравнений» начинается с создания положительной мотивации к ее изучению. Познавательным мотивом является рассмотрение проблемы решения уравнений в натуральных числах в

работах известного греческого математика Диофанта (III в.), в связи с чем уравнения с несколькими переменными, для которых требуется найти решения в натуральных или целых числах, называют диофантовыми уравнениями. Учебно–познавательным мотивом является интерес к решению текстовых задач алгебраическим способом. Очень важны для обучающихся 7 класса узкие социальные мотивы: овладение способом налаживания сотрудничества в учебном труде. Учебно — познавательными действиями при обучении данной темы является распознавание, сравнение, сопоставление, конкретизация общего способа решения для данного типа задач.

Основной учебной задачей при изучении темы «Системы линейных уравнений» является формирование понятий:

— линейное уравнение (Линейным уравнением с двумя переменными называется уравнение вида ax+by=c , где x и y – переменные, a, b и c – некоторые числа);

— решение уравнения (Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство);

— равносильные уравнения (Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными).

— свойства уравнений (если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному; если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному);

— график уравнения (графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых являются решениями этого уравнения; графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая);

— решение системы уравнений (решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.);

1. выражают из какого-нибудь уравнения системы одну переменную через другую;

2. подставляют в другое уравнение системы вместо этой переменной полученное выражение;

3. решают получившееся уравнение с одной переменной;

4. находят соответствующее значение второй переменной;

1. умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;

2. складывают почленно левые и правые части уравнений системы;

3. решают получившееся уравнение с одной переменной;

4. находят соответствующее значение второй переменной;

— решение задач с помощью систем уравнений

1. обозначают некоторые неизвестные числа буквами и, используя условие задачи, составляют систему уравнений;

2. решают систему;

3. истолковывают результат в соответствии с условием задачи.

Для осознанного усвоения алгоритма решения линейных уравнений можно начинать со схемы уравнения и определения его компонентов, определяя логическую цепочку в конструировании определения понятия.

Линейное уравнение с одной переменной.

Стандартный вид : ах + b=0 , где а, b – числа, х – переменная

Линия уравнений в курсе алгебры 7 класса имеет не только важное теоретическое значение, но и служит практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различного вида уравнений и систем уравнений.

Преемственность в работе над задачей в курсе математике реализуется посредством эвристического алгоритма на всех этапах решения задачи:

1 этап – анализ содержания задачи;

2 этап – моделирования условия;

3 этап – выделение опорных знаний и основных задач ;

4 этап – моделирование решения задачи;

5 этап – подведение итогов по решению задачи;

6 этап – выполнение возможных обобщений.

Образовательные цели/задачи при обучении темы «Системы линейных уравнений»:

иметь представление о правилах решения уравнений и систем уравнений;

овладеть умением решать сложные системы уравнений различными способами, решать текстовые задачи на составление систем уравнений.

Для создания положительной мотивации при изучении темы можно предложить занимательные задачи, которые решаются с помощью систем уравнений, интересные факты из истории математики по теме «Системы линейных уравнений».

Логико-дидактический анализ задачного материала темы


источники:

http://school-science.ru/5/4/34568

http://nsportal.ru/shkola/algebra/library/2015/06/16/proekt-po-teme-realizatsiya-trebovaniy-fgos-ooo-pri-obuchenii