Программа для решения нелинейных уравнений python

Численные методы: практическое применение Python

С. Лемешевский (sergey.lemeshevsky at gmail.com)

Институт математики НАН Беларуси

May 14, 2019

Основы языка Python

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Решение систем линейных уравнений

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Задачи на собственные значения и собственные вектора матриц

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Нелинейные уравнения и системы

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Задача Коши для обыкновенных дифференциальных уравнений

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Численные методы решения краевых задач для ОДУ

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Нестационарные задачи математической физики

  • LaTeX PDF: Для печати на A4, Для чтения на экране
  • HTML: Стиль FlatUI, Стиль Journal

Предупреждение

Файлы в формате PDF получены с помощью LaTeX и практически не имееют технических ошибок при отображении формул. Однако HTML файлы используют MathJax для отрисовки математических LaTeX-формул, и иногда эта технология вызывает неожиданные сбои (например, неправильное отображение на веб-странице, несмотря на правильность синтаксиса LaTeX в формулах). Обратитесь к соответствующему файлу PDF, если вы обнаружите, что в HTML отсутствуют или неправильно отображены формулы.

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через вектор неизвестных и определим вектор-функцию Тогда система (1) записывается в виде уравнения:

(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

(3)

Определим матрицу Якоби:

(4)

Запишем(3) в виде:

(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

(6)

где — итерационные параметры, a — квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Система линейных уравнений (5) для нахождения нового приближения может решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

Digiratory

Лаборатория автоматизации и цифровой обработки сигналов

TensorFlow. Решение систем нелинейных уравнений

В прошлой статье мы рассмотрели, как можно решать системы линейных алгебраических уравнений, однако возможности TensorFlow этим не ограничиваются. Несмотря на то, что в явном виде библиотека не содержит инструментария для решения нелинейных систем, в ней есть множество инструментов для решения оптимизационных задач, а численное решение сиcтемы уравнений сводится как раз к такой задаче.

Идея решения

Для получения решения необходимо выполнить следующие действия:

  1. Определить область поиска решений/сетку начальных условий
  2. Построение графа, реализующего систему
  3. Выбрать начальные условия
  4. Решить оптимизационную задачу
  5. Перейти на п.3, если не найдены все решения/не перебраны все выбранные начальные условия
  6. Объединить эквивалентные решения
  7. Profit

В целом, как видно алгоритм не сложный, однако позволяет решать системы практически любой сложности.

Пример решения задачи

Для большей ясности изложения решения, рассмотрим его на примере следующей системы:

\[
\begin
x^2 — 2y^2 — xy + 2x — y + 1 = 0 \\
2x^2 — y^2 +xy + 3y — 5 = 0
\end
\]

Инициализация переменных (начальных условий)

Импортируем пакет tensorflow

Создаем интерактивную сессию

Далее объявляем инициализаторы. Одним из простейших вариантов является использование случайного равномерного распределения для инициализации переменных.

Теперь создаем переменные и передаем им объект инициализатора

Запустим для демонстрации 5 раз и выведем начальные значения переменных. Для запуска выполняем инициализацию всех переменных sess.run(tf.global_variables_initializer()) и вычисление начальных значений sess.run([x,y])

Заметим, что вывод, скорее всего, будет другой, так как значения инициализируются случайным образом.

Построение графа системы нелинейных уравнений

Следующим шагом является создание графа, реализующего левую часть системы (в правой части должны быть 0). Граф формируется на базе созданных ранее переменных \(x\) и \(y\). При необходимости использования математических функций, их можно найти в пакете tf.math, например, квадратный корень.

Так как в нашем случае использование функций необязательно, можно использовать обычные операторы умножения, сложения и др., предусмотрительно уже перегруженные для тензоров.

Выведем значения уравнений при последних значениях переменных, заданных ранее:

Поиск одиночного решения

Теперь можно перейти к процессу поиска решения системы уравнений. По определению, необходимо, чтобы значений выражений левых частей (в нашем случае eq1 и eq2) были равны 0, а на практике имели минимальное отклонение от 0.

Первым делом необходимо задать функцию потерь \(E\) и выбрать тип оптимизатора. Будем использовать среднеквадратичное отклонение в качестве функции потери и градиентный спуск в качестве оптимизатора.

Зададим \(\epsilon\) меньше которого должна быть ошибка решения \(E Запись опубликована 04.12.2018 автором Александр Синица в рубрике TensorFlow.


источники:

http://habr.com/ru/post/419453/

http://digiratory.ru/1235