Программа по решению уравнений с корнями

Иррациональные уравнения онлайн калькулятор

Наш калькулятор поможет вам решить иррациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.

Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.

Добро пожаловать на сайт Pocket Teacher

Наш искусственный интеллект решает сложные математические задания за секунды

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

начать

Иррациональные уравнения

Что такое иррациональные уравнения и как их решать

Уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень, называются иррациональными. Когда мы имеет дело с дробной степенью, то мы лишаем себя многих математических действий для решения уравнения, поэтому иррациональные уравнения решаются по-особенному.

Иррациональные уравнения, как правило, решают при помощи возведения обеих частей уравнения в одинаковую степень. При этом возведение обеих частей уравнения в одну и ту же нечетную степень – это равносильное преобразование уравнения, а в четную – неравносильное. Такая разница получается из-за таких особенностей возведения в степень, таких как если возвести в чётную степень, то отрицательные значения “теряются”.

Смыслом возведения в степень обоих частей иррационального уравнения является желание избавиться от “иррациональности”. Таким образом нам нужно возвести обе части иррационального уравнения в такую степень, чтобы все дробные степени обоих частей уравнения превратилась в целые. После чего можно искать решение данного уравнения, которое будет совпадать с решениями иррационального уравнения, с тем отличием, что в случае возведения в чётную степень теряется знак и конечные решения потребуют проверки и не все подойдут.

Таким образом, основная трудность связана с возведением обеих частей уравнения в одну и ту же четную степень – из-за неравносильности преобразования могут появиться посторонние корни. Поэтому обязательна проверка всех найденных корней. Проверить найденные корни чаще всего забывают те, кто решает иррациональное уравнение. Также не всегда понятно в какую именно степень нужно возводить иррациональное уравнение, чтобы избавиться от иррациональности и решить его. Наш интеллектуальный калькулятор как раз создан для того, чтобы решать иррациональное уравнение и автоматом проверить все корни, что избавит от забывчивости.

Бесплатный онлайн калькулятор иррациональных уравнений

Наш бесплатный решатель позволит решить иррациональное уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

Немного теории.

Решение иррациональных уравнений и неравенств

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
\( \sqrt[\Large6\normalsize] = \sqrt[\Large6\normalsize] <2x-6>\)

Возведя обе части уравнения в шестую степень, получим:
\( x^2-5x = 2x-6 \Rightarrow \)
\( x^2-7x +6= 0 \Rightarrow \)
\( x_1=1, \; x_2=6 \)
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <-4>= \sqrt[\Large6\normalsize] <-4>\), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <6>= \sqrt[\Large6\normalsize] <6>\) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную \( u=x^2-x\), получим существенно более простое иррациональное уравнение:
\( \sqrt+\sqrt = \sqrt <2u+21>\).
Возведём обе части уравнения в квадрат:
\( (\sqrt+\sqrt)^2 = (\sqrt<2u+21>)^2 \Rightarrow \)
\( u+2 +2\sqrt\sqrt +u+7 = 2u+21 \Rightarrow \)
\( \sqrt <(u+2)(u+7)>= 6 \Rightarrow \)
\( u^2+9u+14=36 \Rightarrow \)
\( u^2+9u-22=0 \Rightarrow \)
\( u_1=2, \; u_2=-11 \)
Проверка найденных значений их подстановкой в уравнение \( \sqrt+\sqrt = \sqrt <2u+21>\) показывает, что \( u_1=2 \) — корень уравнения, а \( u_2=-11 \) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение \( x^2-x=2 \Rightarrow x^2-x-2=0 \), решив которое находим два корня: \( x_1=2, \; x_2=-1 \)
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
\( 2x^2 +6 -2\sqrt <2x^2-3x+2>= 3x+12 \Rightarrow \)
\( 2x^2 -3x +2 -2\sqrt <2x^2-3x+2>-8 = 0 \Rightarrow \)

Введя новую переменную \( y=\sqrt <2x^2-3x+2>\), получим: \( y^2-2y-8=0 \), откуда \( y_1=4, \; y_2=-2 \). Значит, исходное уравнение равносильно следующей совокупности уравнений:
\( \left[\begin \sqrt <2x^2-3x+2>=4 \\ \sqrt <2x^2-3x+2>= -2 \end\right. \)

Из первого уравнения этой совокупности находим: \( x_1=3<,>5; \; x_2=-2 \). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение \( \sqrt <2x^2-3x+2>=4\). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч \( [5; \; +\infty) \). В этой области выражение \( \sqrt \) можно представить следующим образом: \( \sqrt = \sqrt\sqrt \). Теперь уравнение можно переписать так:
\( x+x -5 +2\sqrt\sqrt +2\sqrt +2\sqrt -48 = 0 \Rightarrow \) \( (\sqrt)^2 +2\sqrt\sqrt +(\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \Rightarrow \) \( (\sqrt +\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \)

Введя новую переменную \( y= \sqrt +\sqrt \), получим квадратное уравнение \( y^2+2y-48=0 \), из которого находим: \( y_1=6, \; y_2=-8 \). Таким образом, задача свелась к решению совокупности уравнений:
\( \left[\begin \sqrt +\sqrt =6 \\ \sqrt +\sqrt = -8 \end\right. \)
Из первого уравнения совокупности находим \( x= \left( \frac<41> <12>\right)^2 \), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что \( x= \left( \frac<41> <12>\right)^2 \) — является корнем уравнения \( \sqrt +\sqrt =6 \). Но это уравнение равносильно исходному уравнению, значит, \( x= \left( \frac<41> <12>\right)^2 \) — является корнем и исходного уравнения.
Ответ: \( x= \left( \frac<41> <12>\right)^2 \)

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
\( \sqrt[\Large4\normalsize] <1-x>+ \sqrt[\Large4\normalsize] <15+x>=2 \)

Введём новые переменные: \( \left\<\begin u=\sqrt[\Large4\normalsize] <1-x>\\ v=\sqrt[\Large4\normalsize] <15+x>\end\right. \)

Тогда уравнение примет вид \(u+v=2\). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
\( \left\<\begin u^4=1-x \\ v^4= 15+x \end\right. \)

Сложим уравнения последней системы: \(u^4 +v^4 =16\). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
\( \left\<\begin u+v=2 \\ u^4 +v^4 =16 \end\right. \)
Решив её, находим: \( \left\<\begin u_1=0 \\ v_1 =2; \end\right. \) \( \left\<\begin u_2=2 \\ v_2 =0 \end\right. \)

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=0 \\ \sqrt[\Large4\normalsize] <15+x>=2; \end\right. \) \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=2 \\ \sqrt[\Large4\normalsize] <15+x>=0 \end\right. \)

Решив эту совокупность, находим: \(x_1=1, \; x_2=-15 \)

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
\( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>= \sqrt[\Large3\normalsize] <2x-1>\)

Возведём обе части уравнения в куб:
\( 2x+1 + 3\sqrt[\Large3\normalsize] <(2x+1)^2>\cdot \sqrt[\Large3\normalsize] <6x+1>+ 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <(6x+1)^2>+6x+1 = 2x-1 \Rightarrow \) \( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot (3\sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>) = -6x-3 \)

Воспользовавшись исходным уравнением, заменим сумму \( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>\) на выражение \( \sqrt[\Large3\normalsize] <2x-1>\):
\( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot \sqrt[\Large3\normalsize] <2x-1>= -6x-3 \Rightarrow \)
\( 3\sqrt[\Large3\normalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 \)
Возведём обе части в куб:
\( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 \Rightarrow \)
\( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 \Rightarrow \)
\( 16x^2(2x+1) =0 \Rightarrow \)
\( x_1= -0<,>5; \; x_2=0 \)

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида \( \sqrt 0 \). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство \( \sqrt 0 \\ f(x) 0 \\ x^2-x-12 0 \\ x > -12 \end\right. \)

Получаем: \( x \geqslant 4\)


Ответ: \( x \geqslant 4\)

Рассмотрим теперь неравенство вида \( \sqrt > g(x) \).

Ясно, во-первых, что его решения должны удовлетворять условию \( f(x) \geqslant 0 \).
Во-вторых, замечаем, что при \( g(x) g(x) \) не вызывает сомнений.
В-третьих, замечаем, что если \( g(x) \geqslant 0 \), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство \( \sqrt > g(x) \) равносильно совокупности систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ g(x) (g(x))^2 \end\right. \)

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
\( \left\<\begin x^2-x-12 \geqslant 0 \\ x 0 \)

Преобразуем неравенство к виду \( x^2+3x-10 +3\sqrt >0 \) и введём новую переменную \( y= \sqrt \). Тогда последнее неравенство примет вид \( y^2+3y-10 >0 \), откуда находим, что либо \(y 2\).

Таким образом, задача сводится к решению совокупности двух неравенств:
\( \left[\begin \sqrt 2 \end\right. \)

Первое неравенство не имеет решений, а из второго находим:
\( x^2+3x >4 \Rightarrow \)
\( (x+4)(x-1) >0 \Rightarrow \)
\( x 1 \)
Ответ: \( x 1 \).

Программа для решения квадратных уравнений на C++

Довольно часто в пособиях по программированию встречаются задания по нахождению решений каких-нибудь математических уравнений. Задача нахождения корней квадратного уравнения — это довольно тривиальная задача, как и многие другие задачи. Решается она очень просто при помощи листа бумаги и ручки, но решение можно автоматизировать посредством написания прикладной программы и её использования. В этой статье мы напишем такую программу.

Алгоритм решения квадратного уравнения

Многие знают, что уравнение вида ax 2 + bx + c = 0 , где a не равно 0, называют квадратным уравнением.

Существуют различные способы решения квадратных уравнений, но мы рассмотрим решение через дискриминант.

Обозначается дискриминант буквой D . Из школьного курса знаем, что D = b 2 — 4ac .

Существует несколько условий:

  • Если D > 0, то решение имеет 2 различных вещественных корня.
  • Если D = 0, то оба вещественных корня равны.
  • Если D для ввода\вывода в консоли, #include для работы с математическими функциями и область using namespace std;

Просим пользователя ввести значения переменных и сохраняем каждое значение

Проверяем условие, если дискриминант больше или равен 0, то находим корни и выводим

в противном случае выводим сообщение

На этом всё, осталось скомпилировать, запустить и проверить. Запускаем и вводим данные, чтобы D был меньше 0

В этом случае D = 3*3 — 4*2*3 = -15, а это меньше 0, значит ответ программа дала верный.

Ответы тоже верны. Программа работает правильно.

Ниже представлен весь листинг программы для нахождения корней квадратного уравнения на C++

Для вас это может быть интересно:

Программа для решения квадратных уравнений на C++ : 24 комментария

Программировать так сложно…

  1. Nicknixer Автор записи 15.10.2016

Не так сложно, как Вам кажется! Немного литературы, немного практики и смотреть на код решения такой задачи Вы будете по-другому.

Доброго времени суток! Помогите пожалуйста написать программу, которая считает сколько символов в ряде двумерного массива. То есть , например массив 5 на 5, сколько символов в 1 ряде, сколько во 2 и т.д.

Ответил вам по электронной почте

Критику принимаете? 🙂
Программа дырявая как сито.

Если число очень маленькое, но положительное, например 10^(-20) — у вас будет переполнение или типо того. Оператор > проверяет знак числа (это отдельный бит), а оператор == для дробных чисел не имеет смысла, т.к. в младших разрядах числа обычно находится какой-нибудь мусор, который при таком сравнении дает false.

x = ( -1*b + sqrt(b*b — 4*a*c) ) / (2 * a);
x = ( -1*b — sqrt(b*b — 4*a*c) ) / (2 * a);

Тут есть три вопроса:
1) зачем два раза вычислять одно и тоже (я про корень)
2) что делать если мне корни надо как-то использовать, а не просто вывести (тут есть проблема, ведь у меня то один корень — то два). Чтобы лучше понять в чем проблема — попробуйте вынести вычисление корней в отдельную функцию. У вас то вообще, если корень один — то их выведется все равно два, одинаковых.
3) в переменной «a» может быть ноль (или близкое к нулю число) — при этом мы получим деление на ноль (а точнее, переполнение).

Но это ведь еще не все. Что будет если и «a» и «b» равны нулю? — тебе надо рассмотреть два варианта — если c = 0 (условно, близко к нулю), то корней бесконечно много. А если c != 0, то корней нет.

Вообще, эта задача — прекрасный пример для юнит-тестирования и демонстрации принципов разработки через тестирование. Именно его я рассматривал в своей статье по теме тестирования: Юнит-тестирование. Пример. Boost Unit Test. Дело в том, что тут куча вариантов сделать ошибку, при этом их понимание приходит не сразу, т.е. школьник решая задачу напишет по формуле которой учили (ну и вот как у вас). А потом надо разбираться и смотреть как программа может сломаться, при этом разрабатывать тесты.

  1. Николай Сергейчук Автор записи 09.02.2017

Принимаем 🙂
Согласен с вами во всём! Программу можно реализовать намного лучше, используя различные проверки и валидацию входных данных.
Однако, статья рассчитана на аудиторию, которая только начинает познавать программирование или делает лабораторную. 🙂 Чтобы людям легче было понять, реализация данной программы упрощена до невозможности. И, возможно, несправедливо было с моей стороны не предупредить их о возможных ошибках в работе программы, которые могут вскрыться позже, если подать на вход определенные значения.
Кстати, у вас интересная статья по тестированию!

Николай, доброго времени суток! Можете помочь с написанием програмки в с++? 1-1/2!+1/3!-1/4!+1/5! и так до 1/100! ? Чтобы при заднии в строке номера члена последовательности выдавал сумму до него по такой вот формуле? Буду очень благодарен!

Пожалуйста подскажите как ввести экран правильный ответ дискриминанта

Помогите решить в Dev C++
Sqrt x^2+1+sqrt|x|,x0

Здравствуйте, можете помочь с решением биквадратного и триквадратного уравнения?

#include
using namespace std;
int main()
<
/*Решение квадратных уравнений*/
setlocale(0, «»);
cout a;
cout <> b;
cout <> c;
D = pow(b, 2) — 4 * a * c;
cout

ну и? если даже тупо скопировать код и вставить его в cpp.sh , ничего не работает. поебота какая то этот с++

Уважаемая, Лена! Я, надеюсь, вы знаете, что код программы, написанной на языке программирования C++ нельзя тупо вставить в блокнот и сохранить под названием «cpp.sh»? Если не знали, то я, видимо, открыл для вас Америку!

помогите решить. заданы 3 перемены a.b.c записать вы радение на С
< 7a/b+2a, если a=b,
Х= < -34, если a>b,
< 3a/(2b-100), если a>b и а не равно != с

iconcerts где забыл
#include

Я ради интереса написал программу нахождения корней квадратного уравнения на С++, с выводом корней как в десятичном виде, так и в виде простой дроби (причём уже сокращённой), потому что выводя корни в десятичном виде программа их одновременно сокращает и округляет и 1/3 превращается в 0.333333 хотя на самом деле 0.333333 (3), то есть для проверки правильно ли нашёл корни ваш ребёнок, вы с получите что-то типа: X1= 0.285714; X2=0.214286, а на самом деле это будет X1=2/7; X2=3/14, кроме того, если корень из дискриминанта не получается целым числом, вы уже получите двойную неточность: сначала при извлечении корня программа отсечёт значение до 4-6 цифр после запятой с округлением, а затем сделает то же самое при делении числителя на знаменатель. Я и здесь сделал вывод корней в двух значениях: в десятичном и в виде выражения X1= (-b + sqrt(D))/(2*a); X2= (-b — sqrt(D))/(2*a), то есть выводится примерно вот так X1=-5+sqrt(21)/2; X2=-5-sqrt(21)/2 с одновременным разложением дискриминанта под корнем на множители, вынесением этих множителей из-под корня, если они выносятся нацело, их перемножением и дальнейшим сокращением. Вот, например, имеем a=3, b=15, c=3, при решении получаем D=189 программа выдаёт десятичные корни X1= -0.208712 и X2= -4.79129, а в виде выражения имеем: X1= -5+sqrt(21)/2, то есть первоначально получаем: X1= -15+sqrt(189)/6, -> 189=21*9 -> -15+3sqrt(21)/6 далее идёт сокращение на 3 и итог -5+sqrt(21)/2

День добрый.
Недавно начал изучать C++. Решил попробовать написать решение квадратного уравнения именно через оператор вида «условие ? выполняется : не выполняется». Т.е. если условие выполняется, то имеем два решения (даже если d = 0, то тоже должно быть два решения x1 = x2), если d a;
std::cout <> b;
std::cout <> c;
d = pow(b, 2) — 4 * a*c;
d >= 0 ? xfst = ((-b + sqrt(d)) / double(2 * a)) , xscd = ((-b — sqrt(d)) / double(2 * a)) : std::cout

  1. Николай Сергейчук Автор записи 12.02.2020

if (d >= 0) <
xfst = ((-b + sqrt(d)) / double(2 * a));
xscd = ((-b — sqrt(d)) / double(2 * a));
std::cout

Создать программу для решения квадратного уравнения.
У меня не получаеться, но и копифейсом я не хочу заниматься.
Прошу помогите. Заранее спасибо.

Здравствуйте! Как решить эту задачу? Приведенный пример сверху не подходит .

Давайте напишем действительно полезную программу! Вы наверняка уже устали считать дискриминант для квадратных уравнений? Давайте автоматизируем этот процесс.

На вход программы подаются три целых числа — коэффициенты уравнения ax^2 + bx + c = 0ax
2
+bx+c=0

Гарантируется, что a \neq 0a

=0.

Выведите через пробел корни уравнения в порядке убывания и округленные «вниз». Если уравнение имеет корень кратности 2 — выведите одно число. Если у уравнения нет действительных корней — выведите «NO»

Для извлечения корней используйте функцию sqrt. Она содержится в библиотеке сmath ( она уже импортирована в коде ). Для округления воспользуйтесь функцией floor ( из той же библиотеки ).

1 0 -4
Sample Output 1:

2 -2
Sample Input 2:

1 2 2
Sample Output 2:

Пожалуйста подскажите как ввести экран ответ дискриминанта

Пожалуйста подскажите как ввести на екран ответь дискриминанта

Подскажите как правильно решить?
Обчислити z = (x1 + y1) / (x2 + y2), де х1, х2 — коренi рiвняння 2х^2 + x — 4 =0.
y1, y2 — коренi рiвняння ay^2 + 2y — 1 = 0. Усi коренi дiйснi.

using namespace std;

int main() <
double a = 2, b, c = -4;
int x1, x2;
double a1, b1 = 2, c1 = -1;
int y1, y2;
float z;

if((b*b — 4*a*c) >= 0 ) <
x1 = ( -1*b + sqrt(b*b — 4*a*c)) / (2 * a);
cout a1;

if((b1*b1 — 4*a1*c1) >= 0) <
y1 = ( -1*b1 + sqrt(b1*b1 — 4*a1*c1)) / (2 * a1);
cout = 0, y1 >= 0, y2 >= 0) <
z = (x1 + y1)/(x2 +y2);
cout

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.


источники:

http://www.math-solution.ru/math-task/irrational-equality-inequality

http://nicknixer.ru/programmirovanie/programma-dlya-resheniya-kvadratnyx-uravnenij-na-c/