Проходит ли уравнение через начало координат

Решение на Упражнение 914 из ГДЗ по Алгебре за 7 класс: Мерзляк А.Г.

Условие

Решение 1

Решение 2

Поиск в решебнике

Популярные решебники

Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

Издатель: А.Г. Мордкович, 2013г.

Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

График линейной функции, его свойства и формулы

О чем эта статья:

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

4.13. Уравнения прямых на координатной плоскости

Давайте рассмотрим такие функций, графики которых имеют вид прямых. Простоты ради, мы будем иметь дело с безразмерными величинами, а значит, в качестве осей у нас будут выступать простые числовые прямые, и все наши чертежи мы будем делать на обычной координатной плоскости.

Прямая, проходящая через начало координат

Построение графика по заданной функции

Пусть переменная \(y\) пропорциональна переменной \(x\) с коэффициентом пропорциональности \(k\) :

Давайте договоримся, что \(x\) здесь — это независимая переменная, а \(y\) — зависимая. Коэффициент \(k\) играет роль константы (параметра). В таких случаях говорят, что \(y\) является (однородной) линейной функцией от \(x\) . Графиком этой функции, как мы хорошо знаем, является прямая, проходящая через начало координат \((0, 0)\) . Для построения этой прямой нам достаточно определить еще какую-либо одну ее точку \((x_1, y_1)\) . Для этого положим, например, \(x_1 = 1\) . Тогда \(y_1 = k \cdot 1 = k\) . Проводим через эту точку и начало координат прямую линию. Это и есть график функции \(y\) от \(x\) . Так, по крайней мере, обстоит дело в теории, а на практике точку \((x_1, y_1)\) лучше брать настолько далеко от начала координат, насколько позволяет чертеж. В этом стучае прямую удается провести наиболее точно. Ниже приведен пример такого построения для функции \(y=\frac<1> <2>x\) .

Восстановление функции по графику

Решим теперь обратную задачу. Пусть на координатной плоскости с осями \(x\) и \(y\) нам дана прямая, проходящая через начало координат. Спрашивается: графиком какой функции она является? При этом подразумевается, что функция должна быть задана в виде формулы, связывающей переменные \(x\) и \(y\) . Такая формула носит название уравнения графика функции. В данном случае речь идет об уравнении прямой, проходящей через точку \((0,0)\) .

Заранее ясно, что это уравнение имеет вид

От нас фактически только требуется найти значение константы \(k\) . Для этого отметим на прямой произвольную точку, отличную от \((0,0)\) , и определим ее координаты \((x_1, y_1).\) Эти координаты, очевидно, связаны соотношением

При этом следует особо подчеркнуть, что константа \(k\) не зависит от выбора точки \((x_1, y_1).\) Какую бы точку на прямой мы не выбрали в качестве \((x_1, y_1),\) мы придем к одному и тому же значению \(k\) . Таким образом,

Пример нахождения уравнения прямой приведен на следующем рисунке.

Отметим два особых случая. Во-первых, прямая может совпасть с осью \(x\) . Тогда значение \(y\) остается постоянным и равным нулю на всем ее протяжении. Тем не менее наше общее решение остается в силе. При этом оказывается, что \(k = 0\) и переменную \(y\) можно всё еще формально считать функцией от \(x\) :

Во-вторых, прямая может совпасть с осью \(y\) . В этом случае в каждой ее точке \(x = 0\) . Формула для константы \(k\) оказывается неприменимой, потому что число \(x_0\) , стоящее в знаменателе, обращается в нуль. Приходится признать, что мы не можем подобрать такую функцию \(y\) от \(x\) , которая имела бы подобный график. Разве что, мы можем теперь принять \(y\) за независимую переменную и формально рассматривать \(x\) как функцию от \(y<:>\)

Несложно убедиться, что всякая точка, лежащая на оси \(y\) , удовлетворяет этому равенству. Заметим, что если бы мы захотели написать уравнение прямой, проходящей через начало координат, в самом общем виде, то мы могли бы это сделать так:

Это соотношение между \(x\) и \(y\) остается справедливым в обоих рассмотренных частных случаях, однако выбор параметров не является однозначным, так как в качестве пары чисел \((x_1, y_1)\) можно взять координаты любой точки, принадлежащей прямой.

Произвольная прямая

Восстановление функции по графику

Начнем с обратной задачи. Пусть теперь на координатной плоскости дана произвольная прямая, не проходящая через начало координат. Вопрос нас будет интересовать всё тот же: графиком какой функции она является или, короче говоря, каково уравнение этой прямой?

Отметим на прямой две любые несовпадающие точки и обозначим их координаты через \((x_0, y_0)\) и \((x_1,y_1)\) . Поместим в точку \((x_0, y_0)\) начало новой системы координат с осями \(x’\) и \(y’\) , сонаправленными с соответствующими осями \(x\) и \(y\) старой системы.

Тогда координаты другой отмеченной точки в новой системе окажутся равны

\(\begin x_1′ \\ y_1′ \end = \begin x_1 \\ y_1 \end — \begin x_0 \\ y_0 \end = \begin x_1 — x_0 \\ y_1 — y_0\end.\)

Вообще, как мы знаем, новые («штрихованные») координаты любой точки связаны со старыми («нештрихованными») координатами соотношением

Наша прямая проходит через начало координат новой системы, поэтому мы можем сразу же выписать ее уравнение в «штрихованных» переменных:

Переходя к «нештрихованным» переменным, получаем

Что и решает поставленную задачу.

При желании, можно еще выразить функцию \(y\) от \(x\) в явном виде:

\(y = k\,x — k\,x_0 + y_0\)

\(y = k\,x + b,\) где \(b = — k\,x_0 + y_0.\)

Значения констант \(k\) и \(b\) не зависят от выбора точек \((x_0, y_0)\) и \((x_1,y_1)\) . Какие бы точки на заданной прямой мы не взяли, мы всегда придем к одним и тем же значениям \(k\) и \(b\) . Заметим, что из-за дополнительного слагаемого \(b\) переменные \(x\) и \(y\) не пропорциональны друг другу. Поэтому константа \(k\) называется теперь не коэффициентом пропорциональности, как это было раньше, а угловым коэффициентом. Название это происходит от того, что значение \(k\) тесно связано с углом наклона прямой по отношению к оси \(x\) . Чем круче идет прямая, тем больше ее угловой коэффициент.

Константу \(b\) иногда называют свободным членом. Как легко видеть, переменная \(y\) равна \(b\) при \(x = 0\) . Иными словами, \(b\) — это точка на оси \(y\) , в которой эта ось пересекается с нашей прямой. Если \(b = 0\) , то прямая проходит через начало координат, и мы возвращаемся к частному случаю, рассмотренному ранее.

Из наших рассуждений следует, что любая прямая на координатной плоскости может быть описана уравнением вида

при подходящем выборе констант \(k\) и \(b\) . Единственным исключением является особый случай, когда в выражении для углового коэффициента \(k = \frac\) знаменатель обращается в ноль. Это происходит, если \(x_1 = x_0\) . Это значит, что прямая перпендикулярна оси \(x\) (и соответственно параллельна оси \(y\) ). При таких обстоятельствах \(x\) неизбежно утрачивает роль независимой переменной, но может формально рассматриваться как функция от \(y\) :

\(x = 0 \cdot (y — y_0) + x_0.\)

В совершенно общем виде уравнение прямой можно написать следующим образом:

\((x_1-x_0) (y-y_0) = (y_1-y_0) (x-x_0).\)

При этом, однако, выбор двух пар параметров \((x_0, y_0)\) и \((x_1, y_1)\) (которые, по смыслу, являются координатами двух произвольных точек, лежащих на прямой) неоднозначен.

Построение графика по заданной функции

Теперь давайте выясним, как построить график неоднородной линейной функции \(y\) от \(x\) , которая определяется как

где \(k\) и \(b\) — любые действительные числа. Как мы только что выяснили, к такому виду сводится уравнение произвольной прямой (при условии, что она не параллельна оси \(y\) ). Строго говоря, это не исключает, что при некоторых значения параметров \(k\) и \(b\) график этой функции может отличаться от прямой линии. Давайте убедимся, что этого никогда не происходит. Перепишем данное нам уравнение следующим образом:

Если перейти в новую, штрихованную, систему координат с началом в точке \((0, b)\) и с осями \(x’\) и \(y’\) , сонаправленными с соответствующими осями старой системы, то в новых координатах уравнение примет вид:

Мы получим тогда не что иное, как уравнение пропорциональной зависимости, которое гарантировано задает прямую линию. Значит, и график неоднородной линейной функции

представляет собой прямую линию при любых значениях параметров \(k\) и \(b\) . Но для того, чтобы построить прямую, достаточно знать две ее произвольные точки \((x_0, y_0)\) и \((x_1, y_1)\) . В качестве \(x_0\) и \(x_1\) можно взять, например, соответственно ноль и единицу. Тогда

\(y_0 = b\) (при \(x_0 = 0\) ),
\(y_1 = k+b\,\) (при \(x_1 = 1\) ).

Проводим прямую через точки \((x_0, y_0)\) и \((x_1, y_1)\) — и задача решена. На практике, впрочем, лучше брать такие точки, которые расположены друг от друга по возможности дальше, насколько позволяет чертеж. Пример графика неоднородной линейной функции со значением параметров \(k = \frac<1><3>\) и \(b = 1\) представлен на следующем рисунке.

Конспект

\(1\) . Линейная функция \(y = k\,x + b\) называется однородной при \(b = 0\) и неоднородной при \(b \ne 0.\) Ее график на координатной плоскости представляет собой прямую линию, которая строится по двум произвольным точкам.

\(2\) . Уравнение прямой, проходящей через начало координат: \(y = \frac x,\) где \((x_1, y_1)\) — координаты произвольной точки, принадлежащей этой прямой \((x_1 \ne 0).\) Исключение: прямая совпадает с осью \(y\) . Тогда уравнение прямой: \(x = 0.\)

\(3\) . Уравнение произвольной прямой: \(y-y_0 = \frac (x-x_0),\) где \((x_0, y_0)\) и \((x_1, y_1)\) — координаты двух различных произвольных точек, принадлежащих этой прямой. Исключение: прямая проходит через точку \((x_0, y_0)\) параллельно оси \(y\) . Тогда уравнение прямой: \(x = x_0\) .


источники:

http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii

http://www.nekin.info/math/m0413.htm